o,
y 4
PRDBELIEM OF THE Qp January, 2016

MATHEMATICS

5 points:
Find the number of digits in the number 2
logarithmic function. Describe your procedure.

10000 " You may use a basic calculator, but not the

Answer: 30103

Hint: note that 2'° = 1024

Solution:

Since 2'°=1024, we can first approximate it as 1000. Under such an approximation, every 10
factors of 2 give additional 3 digits to the number. We can now improve the accuracy by noting
that 2'""=10""1.024". Let us use calculator to find the number n such that the correction
1.024 "is closest to 10. This turns outto be n=97 ,and 1.024 " =9.97920. Therefore, there is
an additional digit added each time when n passes the number divisible by 97.

2100001 — 5 210" " where n=10000. by dividing 10000 by 97, we find that there are 103 such
“bonus” digits, in addition to 3n=30000, that would be expected if 2'" were replaced with 1000.

Therefore, the total number of digits is 30103.

10 points:
Find the number of digits in the number 125
the logarithmic function. Describe your procedure.

1.000.09° "~ you may use a basic calculator, but not

Answer: 2,096,910

Hint: note that 125 = 1000/2>.

Solution:

We note that 125 = 1000/2>. Therefore, in order to solve the problem we need to count the
number of digits in number 10 , h=300,000.

As shown in solution of 5 pt. problem, in the simplest approximation itis 3n=900,000. In order
to find the first correction, we calculate n/97=3092.78... This means that there are additional
3092 digits in the number 2'". However, since n is so large we no longer can assume that
1.024°7 =9.97920 is equal to 10. Instead, we need to take additional correction, i.e. to find a
number k such that .997920"is close to 0.1. This corresponds to k=1105. Each time when k
passes a value divisible by that than number, we should “skip” one digit. There are 2 such

occurrences for n=3092. We conclude that the number 2*°%*% has (900000+3092-2) digits,
and therefore 125"%°0:00 = (10/2)*0%%0% Kha5 3,000,000-(900000+3092-2)= 2,096,910 digits

PHYSICS

5 points: Three identical balls are connected by identical weightless springs and I

suspended on the string (see figure). Find the accelerations of the balls at the moment l::
the string is burnt.

Hint: The tensions of springs do not change immediately after the string is burnt.

I - -.\._
|
. ___,-'"
g“\
.:I
xgzj
.-".- --."".L
|

Answer: 3g, 0, 0 from top to bottom If-”
|"

"\-_ _o-";

Solution: Let us consider the system before the string is burnt. All three balls are in

equilibrium, that is, the net force on each of them is zero. Right after the string is burnt the
lengths of springs do not change immediately and neither do their tensions. This means that the
middle and the bottom balls will have zero acceleration in the first moment. Let us now consider
the top ball. The tension of the string before it is burnt is 3mg . This means that right after the
string is burnt the net force acting on the top ball is equal to 3mg and is directed downwards.
We conclude that the acceleration of the top ball in the first moment is equal to 3g.

Remark 1: it helps to think about free body diagrams for each ball just before and just after the
string is burnt.

Remark 2: Let us consider the motion of the center of mass of the system. After the string is
burnt the net force acting on the system is 3mgand the net mass of the system is 3m. This
means that the center of mass should accelerate with acceleration g. However, because the

acceleration of bottom and middle balls are zero, the top ball should accelerate with the
acceleration 3g.

10 points

Superman jumps from a bridge of height H, falls vertically and lands on a cart of mass M moving
with velocity V. Find the maximal amount of heat released during the collision of Superman with
the cart if the mass of Superman is m.

Hint: Use the conservation of the horizontal component of momentum and the conservation of

energy.

.= M V2
Answer: O =mgH + 70 -

Solution: Let us consider the conservation of the horizontal component of momentum. We
have MV =(m+ M)v, where v is the horizontal velocity of both cart and superman some time
y . . . 2 (m+M)v2
after superman’s landing. Now we write the conservation of energy mgH +- ="+ Q.
Assuming that the entire difference between mechanical energies is released in the form of heat
(that is, that the released heat is the maximal possible)) we find

_ MV? _ (m+tMW _ mM_ V2
Q=mgH+ =3 > =mgH+ 0 5.

CHEMISTRY

5 points

When Alice, a chemistry teacher, came to her lab, she saw Bob, her technician, staring at the
glass flask with some liquid. “Look, Alice. Don’t you find it odd?” - Bob said.

“What exactly?” Alice replied.

“The flask. You asked me to prepare 3% hydrogen peroxide solution. I've done that. And it
started to bubble. It started to bubble fifteen minutes ago, and | have no idea when it is going to
stop.”

“What did you do with it, Bob?”, Alice asked.

“Nothing special, Alice. | just took 900 mL of distilled water, added 100 mL of 30% hydrogen
peroxide solution to it, and stirred the liquid with a glass stick.”

“Bob, what happened with your finger? Why have you bandaged it?”

“That is just a minor cut, Alice. The glass stick had a sharp edge, and it cut my finger. The
amount of blood was small, | even didn’t have to interrupt my work: | finished stirring, and
stepped out to bandage my finger. By the way, that is why | didn’t see the moment when the
bubbling started: when | came back, the solution has already been bubbling.”

“‘Now | see what is the reason, Bob. | am afraid, you have to prepare a fresh solution, and to
clean the glassware carefully before that. The reason why the bubbles form is ...”

Can you continue Alice’s explanations?

Hint: Bubbling (gas formation) means some reaction occurs. However, to initiate a reaction,

Bob had to add some reactant (and, since the bubbling is intense, the amount of the added
reactant should be significant), or to heat the flask, or to irradiate it with a bright light, or to do
something of that kind. However, it seems he hasn’t done anything. Or he has? Frankly, it
cannot be ruled out that he accidentally dropped something into the flask (just a tiny drop he
haven’t noticed). What could it be, and why could it cause bubbling?

Answer:

Any chemical reaction obeys stoichiometry rules, which means that in a reaction:

A+B—->C

a certain amount of molecules A is needed to react with one molecule B. When all molecules A
or B have been consumed, the reaction stops. However, in our case, evolution of gas (which is
a product of decomposition of hydrogen peroxide) continues for a very long time, and, based on
Alice’s words, we can conclude it will continue until all hydrogen peroxide is consumed. That
seems odd, because Bob didn’t add anything to this flask intentionally, and even if he dropped
something into the flask by accident, the amount of this material was tiny. How can that be
possible?

To answer this question, one has to remember that some type of chemicals, in contrast to other
reactants, are not consumed during chemical reactions. These chemicals are called catalysts.
They facilitate a reaction without being consumed during it. One type of organic catalysts called

enzymes are found in our body that catalyze various chemical reactions to support our
metabolism. Among those enzymes, an enzyme catalase is responsible for accelerating the
reaction of decomposition of hydrogen peroxide. It is a very important enzyme, because every
cell of our body consumes oxygen and uses it for aspiration (to burn glucose into carbon
dioxide, a process that is the main source of energy in our body). During this process, some
amount of hydrogen peroxide is formed as a byproduct. Hydrogen peroxide is a very active
compound that may damage our DNA or proteins, and that is why each cell of our body
produces a special enzyme, catalase, to decompose it to water and oxygen.

That is why our tissues, and especially our blood is a good source of catalase. One drop of our
blood is sufficient to start a reaction of recomposition in the hydrogen peroxide solution, and this
reaction will last until all H,O, is decomposed.

Alise correctly concluded that when Bob cut his finger, the glass stick became contaminated
with Bob’s blood, and when Bob started to stir the solution in the flask, he launched the reaction
of decomposition hydrogen peroxide. Since the catalyst (catalase) is already there, it is
impossible to stop the reaction, and the only option is to prepare a fresh solution in a clean
glassware.

10 points:
You are again playing the “Escape the Room” game. You found a secret safe mounted to the
wall. The safe is locked, and the lock seems to be controlled electronically. You found that
turning off the light in the room deactivates the lock, so you can open the safe when the light is
off. Unfortunately, the door of the safe seems to be connected to some switch that does not
allow you to turn the light on when the door is open. In other words:

- when the light is on - the safe is locked;

- turning the light off unlocks the safe;

- opening the safe’s door blocks the light switch, so you cannot turn the light on until the

safe’s door is closed;

- turning the light on locks the safe.
There is no windows in the room, and when you turn the light off the room is absolutely dark.
When you examined the opened safe by touch you found nothing in it. Your hypothesis is there
is probably some message written on the safe’s internal surface. Unfortunately, you cannot
check this idea, because, according to the rules of this game, all players are supposed to leave
all electronic gadgets (smartphones, flashlights etc) outside.
The complete list of artefacts and materials in this room is as follows:

- The book “How to win friends and influence people” by Dale Carnegie.

- The magnifying glass;

- Two portraits of Sherlock Holmes;

- Three used smoking pipes;

- A box of Havana cigars;

- An empty box of matches;

- Aflashlight with completely empty alkaline batteries;

- Pliers, a knife, and scissors;

- Porcelain dishes and cups;

- A bottle of mineral water;

- Two 1L glass flasks with transparent and colourless liquids; the flasks are ¥ full, the

labels on the flasks say: “1% luminol solution”, and “3% sodium hydroxide solution”;

- A 200 mL bottle of standard 3% hydrogen peroxide solution;

- The book “Cat’s cradle” by Kurt Vonnegut; the book is opened on the page 33;

- There is also the number “221b” on the wall.
Assuming your guess about the secret message was correct, how can you obtain the code
hidden in the safe?

Hint: Since it is not possible to see anything in the absence of light, you have to find a way to

produce it. Your friend (he is the guy with whom you are playing this game; he took Latin
classes in school, so he knows Latin a little bit) told you that the name “luminol” resembles Latin
“lux” (which means “light”). Maybe, this is a clue? Indeed, immediately upon having learned
about that, you remembered that luminol, when oxidized by hydrogen peroxide in a basic media,
produces light. But you also remember some catalyst is needed for that. What substance can
serve as a catalyst? You cannot remember that. You are waving a flashlight with completely
empty batteries (one of the things you found in the room), and mumbling: “Alice, Bob. Alice,
Bob...” Why have these two names come to your mind? Why are you waving the flashlight? You
yourself cannot explain that.....

Answer:

As a rule, oxidation of all compounds generates energy in a form of heat. Luminol is a rare
exception: when it is being oxidized, the energy that is formed during that process is released in
a form of light. If we mix a luminol solution with an oxidizer (one of the best oxidizer are
activated oxygen molecules) in the presence of alkali, the solution starts to glow. The only
question is how to generate activated oxygen molecules. The best source of activated oxygen in
hydrogen peroxide. When hydrogen peroxide is mixed with some catalyst that catalyzes its
decomposition, activated oxygen is formed first. In these young oxygen molecules covalent
bonds between oxygen atoms are not completely formed yet, so they are very active, and they
can oxidize luminol to produce light.

What can catalyze decomposition of hydrogen peroxide? Actually, many substances can do
that. Firstly, most transition metal salts can do that, including iron, manganese, nickel, cobalt
salts. One possible source of manganese containing compounds are dead alkaline batteries. In
the room, you have a flashlight with dead alkaline batteries, a knife, and pliers. You can simply
break the dead battery and drop the content into the mixture of luminol, sodium hydroxide and
hydrogen peroxide solutions.

Another option is to use your own blood as a catalyst (see the 5pt problem). By the way, the
alkaline solution of luminol/hydrogen peroxide is used by criminalists to detect the traces of
blood: when you treat the surface that is contaminated with blood with this solution, the blood
traces start to glow.

BIOLOGY

5 points:
Question: Mammalians and birds are homeotherms, which means they maintain the

temperature of their bodies constant. In contrast, the majority of other animals have no special
mechanisms that allow them to maintain temperature constant. Nevertheless, some species,
including insects, are exceptions to that rule. Which insects are capable of maintaining body
temperature at the level that is considerably higher or lower than that the ambient temperature,
and which mechanisms do they use?

Solution:

Freezing temperatures are detrimental to many forms of life, including most insects. Insect are
exothermic (cold-blooded), which means they cannot produce their own body heat. So to
survive and thrive in climates such as ours, insects have developed several ways to deal with
cold weather.

The first strategy is to avoid freezing conditions altogether. The classic example of this is the
monarch butterfly, which migrates south in the fall to overwintering sites in Mexico. In the spring,
the monarch population makes its way back north. Eventually the children or grandchildren of
last year's monarchs return to Michigan. Pest insects such as armyworms, earworms, potato
leafhoppers, and some grain aphids do not survive the winter in Michigan either. Instead,
populations continuously reproduce in southern states, and insects move north with spring
weather fronts to recolonize northern states. The mild winter of 2011, and above normal
temperatures this spring, did not allow these insects to survive in Michigan, but much of the
central United States has been above normal as well, giving some migratory insects a head
start. For example, on March 22, the University of Kentucky reported armyworm moth catches in
their pheromone traps at levels that are at least two weeks ahead of normal.

Insects that do overwinter in Michigan have ways to survive typical winter weather. Death by
freezing isn’t so much related to low temperature itself as it is the result of ice crystals forming in
the body. Rapid formation and expansion of ice crystals cause cells to burst, resulting in organ
and gut damage. Some insects are freeze-tolerant — they actually survive the formation of ice
crystals in their body by producing ice nucleating proteins that “control” the freezing process.

Other insects are freeze avoidant — they accumulate antifreeze in their cells prior to the winter.
The antifreeze is composed of specialized carbohydrates (in a fancy term, “cryoprotectants”)
that lower the freezing point of the body fluid, preventing the formation of ice crystals. Examples

http://www2.ca.uky.edu/

of cryoprotectants are the sugars trehalose and mannitol, or the sugar alcohol glycerol (we
humans use glycerol as an antifreeze in industrial processes). These cryoprotectants are
effective as long as the insect body cools gradually (i.e., the insect acclimates to the cold, as in
the fall, triggering the production of the compounds) and until temperatures get really cold
(beyond the freezing point of the antifreeze).

To avoid exposure to severe cold and or fluctuating temperature, many insects overwinter under
plant debris or burrow into the soil. As air temperature changes, the temperature under the
cover rises and falls slowly (especially when insulated by snow cover), giving insects a far more
stable environment.

Some examples: A first generation corn borer larvae collected in June is easily killed by cold.
However, a second generation corn borer collected in December is freeze tolerant, and can
survive for months at -4°F, even with ice crystals in its tissue. Overwintering eggs of many aphid
species contain protectants like glycerol and mannitol to avoid freezing. In the case of soybean
aphids, which spend the winter in the egg stage on exposed branches of buckthorn, eggs can
be super-cooled to -29°F. Bean leaf beetles overwinter as adults, and typically survive
temperatures only into the 20s°F. However, beetles overwinter in protected areas in woodlots or
under leaf litter to avoid colder temperatures. In general, milder winter temperatures put less
stress on these and other overwintering insects, and likely increase overall survival into the

spring.

Once an insect successfully overwinters by avoiding freezing, it must successfully emerge,
perhaps feed, colonize a crop, and eventually reproduce. A mild spring can help or hurt this
process. For many adult insects (and some larvae) emerging from winter sleep, often the first
task is to find food. Until food is available, they must live off of fat reserves stored in the body
from the previous year. For other insects that overwinter as late-stage larvae, feeding is not an
option; the fat reserves have to last through pupation, and even into the adult stage. If insects
do not find food or complete development before energy reserves run out, the result is lower
fitness, less reproduction, or even starvation. Thus being active too early or out of synch with a
host crop can lead to reduced overall fitness. For example, alfalfa weevils emerging now in
southern Michigan will likely find legumes to eat. But ladybird beetles that emerge early may not
find enough prey to survive.

Early insect emergence often times coincides with earlier green-up of perennial crops or bud
break on overwintering hosts, giving the insect population a head start and leading to larger pest
populations. However, a cold snap can still kill spring vegetation and set the population back.
For example, in 2007 a hard freeze damaged emerging leaves of buckthorn. This reduced the
feeding sites for soybean aphids that had just emerged on these leaves, and 2007 ended up as
a low aphid year in the state, although initial spring populations were high. Likewise, early pest
emergence may coincide with earlier planting of the host crop (based on degree days), again
leading to larger pest populations. However, a cold or wet period can suddenly set planting or
emergence back, so that the insect life cycle and crop are out of synch. For example, in some

years with delayed planting, corn rootworm larvae emerged into bare field or corn borer moths
did not find tall enough corn to produce a large first generation.

So the bottom line is to be observant as the spring progresses. Chances are that we will see a
few unusually large insect populations, or some population peaks occurring earlier than
expected. But, there could be weather events in April and early May that kill insects, or create
synchrony problems between insect life cycles and crops. From the perspective of many
insects, this is just another year in a bug’s life.

For another extension article on this subject, see “Mild Winter, Record-Breaking March
Temperatures: How Will Field Crop Insects Respond?” in the March 22 edition of The Bulletin
from the University of Illinois.

Gluttons for punishment on this subject can read “Insect overwintering in a changing climate”
from the Journal of Experimental Biology.

This article was published by Michigan State University Extension. For more information, visit
http://www.msue.msu.edu. To have a digest of information delivered straight to your email
inbox, visit http://bit.ly/MSUENews. To contact an expert in your area, Vvisit
http://expert. msue.msu.edu, or call 888-MSUE4MI (888-678-3464).

10 points:
Question: As we know, many anticancer treatments, such as gamma irradiation, or some

chemotherapy agents (cisplatin etc) may by themselves cause cancer in healthy humans. What
is the reason, and does it mean every anticancer therapy should be potentially carcinogenic?

Solution: Gamma-radiation or cisplatin damage cellular DNA. That is their major effect, and

that is the reason why they are both anticancer and carcinogenic agents. To understand why
they suppress the growth of cancer cells, we have to remember that cancer cell are dividing like
crazy: they grow rapidly, then they divide, grow, divide again, and so on. To divide, any cell has
to copy its DNA in full, otherwise newly formed cells will not be viable. Clearly, when
chromosomal DNA is broken, its correct copying is impossible, and the cell’s division will be
aborted, and the cell will die. Our normal cells divide much slower than cancer cells, so normal
cell have time to heal damaged DNA before the next division starts. Moreover, many cells in our
organism, e.g. neurons are dividing so slowly that DNA breaks pose no danger for them at all.
That is why chemical reagents (e.g. cisplatin) or physical factors (i.e. gamma-radiation) that
cause DNA break have much greater negative effect on cancer cells than on our normal cells.

However, DNA breaks and DNA lesions are not absolutely harmless. Even in normal cells they
may lead to mutations that give a start to a transformation of a normal cell to a cancer one (for

http://bulletin.ipm.illinois.edu/article.php?id=1598
http://bulletin.ipm.illinois.edu/article.php?id=1598
http://bulletin.ipm.illinois.edu/index.php
http://ipm.illinois.edu/
http://jeb.biologists.org/content/213/6/980.full
http://jeb.biologists.org/
http://www.msue.msu.edu/
http://www.msue.msu.edu/
http://bit.ly/MSUENews
http://expert.msue.msu.edu/

example, by activating so called oncogene proteins). However, this negative effect is much
weaker than the effect of suppression of cancer cells.

5 points:

COMPUTER SCIENCE

You can write and compile your code here:
http://www.tutorialspoint.com/codingground.htm

Your program should be written in C, C++, Java, or Python

Any input data specified in the problem should be supplied as user input, not
hard-coded into the text of the program.

Please make sure that the code compiles and runs on
http://www.tutorialspoint.com/codingground.htm before submitting it.

Submit the problem in a plain text file, such as .txt, .dat, etc.

No

.pdf, .doc, .docx, etc!

Neat Words.

Some words in the English language are just “neater” than others: their letters are tidily
arranged in alphabetical order. Take chinos as an example. A good example of how things
should be organized in your room, isn’'t it? Then again, some words are clearly rebellious: they
arrange their letters in reverse to the alphabet, e.g. yolked.

Your task this month is to write a program that checks the words for neatness. You will receive a
list of words on the input, and on the output you should indicate for each word whether its letters
are neat, messy or rebellious. For example, given the following input:

sponged fiddle begins yellow yolked biopsy

you should produce the following output:

sponged IS A REBEL

fiddle
begins
yellow
yolked
biopsy

IS
IS
IS
IS
IS

MESSY
NEAT
MESSY
A REBEL
NEAT

Solution:

Python:

from _ future import print function

import sys

http://www.tutorialspoint.com/codingground.htm
http://www.tutorialspoint.com/codingground.htm

import re

while True: # we'll try forever until we get valid input
input words
print ("enter words separated by white space:")
line = sys.stdin.readline()

verify that the input contains only words and white spaces
matched = re.search(" (["\\sA-Za-z])", line) # searching for NON white spaces or letters
if matched:
print ("invalid input: '{}'; try again".format (matched.group(l)))
else:
break
pass
split the input line into separate words
words = line.split()
for word in words: # process each word
letters = list(word) # split word into letters

check if the word is neat
is_neat = True
for i in range(l, len(letters)):
if letters[i-1] >= letters[i]: # nothing was said about the same letter; let's assume
strong neatness
is_neat = False
break
if is neat:
print (word + " is neat")
continue # next word
check if the word is rebellious
is_rebellious = True
for i in range(l, len(letters)):
if letters[i-1] <= letters[i]:
is_rebellious = False
break
if is_rebellious:
print (word + " is rebellious")
continue
print (word + " is messy")
print ("end.")

Java:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Words {
private String[] words;

public void readInput() throws IOException {
BufferedReader br = new BufferedReader (new InputStreamReader (System.in));
Pattern p = Pattern.compile(" ([*\\sA-Za-z])"); // searching for NON white spaces or letters
for(;;) { // we'll try forever until we get valid input
// read input line
System.out.println("enter words separated by white space:");

String line = br.readLine();

// verify that the input contains only words and white spaces
Matcher m = p.matcher(line);
if(m.£find())

System.out.println("invalid input: '"+m.group(l)+"'; try again");
else {

words = line.split("\\s+");

return;

public boolean isNeat(String word) {

for (int i=1; i<word.length(); i++) {
char prevLetter = word.charAt(i-1);
char letter = word.charAt(i);
int prev = Character.getNumericValue (prevletter) ;
int cur = Character.getNumericValue (letter) ;
if (prev >= cur) // nothing was said about the same letters; let's assume strong neatness

return false;
}

return true;

public boolean isRebellious (String word) {
for (int i=1; i<word.length(); i++) {
char prevlLetter = word.charAt(i-1);
char letter = word.charAt (i),
int prev = Character.getNumericValue (prevletter) ;
int cur = Character.getNumericValue (letter);
if (prev <= cur) // nothing was said about the same letters; let's assume strong
rebelliousness
return false;
}

return true;

public void process() {
for (String word : words) { // process each word
if (isNeat (word)) {
System.out.println(word + " is neat");
continue; // next word

if (isRebellious (word)) {
System.out.println(word + " is rebellious");
continue; // next word

System.out.println(word + " is messy");

public static void main(String[] args) throws IOException {
Words words = new Words() ;
words.readInput() ;

words.process () ;
System.out.println("end.");
}
}

10 points: Garden Watering Optimizer

You have a rectangular garden where crops are arranged on a grid with integer coordinates.
Normally there is enough usual precipitation to keep your garden healthy. but once a drought
struck, and it is wreaking havoc to your garden. You lost a lot of crops, and you need to save as
many of the remaining ones by adding a sprinkler. Unfortunately, you can add only one as water
during drought times is rationed. The sprinkler rotates 360° and has a fixed watering radius
(integer) creating a circular watering area. Your task is to find an optimal location where to place
the sprinkler so that the maximum number of surviving crops fall within its watering radius. The
sprinkler can only be placed strictly on a grid, and if there is already a surviving plant at the
point, that plant is killed.

Your program will take 3 integers as an input: two dimensions of the garden (N rows, M
columns) and the watering radius R of the sprinkler. Then you are given a map of the garden,
which is N strings, each of length M and consisting of either dots (‘.’), representing no surviving
crops, or X’s, representing growing plants.
Additional rules:

all the plants and the sprinkler have integer 0-based coordinates

the sprinkler covers the plant if the distance from the sprinkler is less than or equal to the
sprinklers radius. For example, the distance from (2, 2) to (3, 4) is SQRT(5), which is more than
2, and therefore (3,4) would not be covered by a sprinkler with R=2 placed on (2,2)

if you place the sprinkler on a point with a crop, you destroy the crop, so handle
accordingly

in the event you find two or more placements that yield identical scores, pick any one of
them

Example. You are given the following input:
6 7 2

For this garden, the ideal location of the sprinkler is (2,2), which would cover 6 plants.

As a bonus, output the map showing location of the sprinkler and watered plants, like this:

Solution:

Let's place the sprinkler in all possible places scanning the entire garden area. For each position
we count how many plants it covers. Then we find the (first) maximum.

A naive implementation will place a sprinkler into a position and calculate spot by spot whether it
is inside the circle or not using the circle equation:

xN2 + yh2 =2

The problem with this approach is that we need to perform a heavy calculation for each sprinkler
position and for each possible plant spot. Although we cannot avoid scanning all sprinkler
positions we can reduce the calculations for each spot or even examine less spots.

Ouir first optimization can be like this. We calculate a matrix for a covered area saving the result
in a matrix with 0's (outside the circle) and 1's (inside the circle). This will be our pattern. We
represent our garden as another matrix with 0's in empty spots and 1's in places where plants
are. Then we'll move our pattern and stamp it over the garden area applying logical AND. If both
elements are 1 meaning a plant is there AND it's inside the watering circle then we count it. If
any of these two matrix elements are 0, i.e. it's either outside the circle or there's no living plant
there then we don't count it; effectively we add 0 (the result of logical AND) to our count. Another
way to imagine this is like if you are painting a cartoon character (running across the screen)
over a fixed background (the logical operations will be different though).

Further, we can notice that when we shift the sprinkler position by 1 step, say to the right, the
sprinkled area will shift right by 1 cell. Therefore, we don't need to reexamine the entire watered
area (our pattern) but only the boundary. The saving effect will be more pronounced, the more
sprinkler radius is. In order to simplify handling the boundary conditions (when the watering disk
is partly in the garden area) let's introduce a margin area around the garden. The optimization
described in this paragraph is overkill for a small garden and handling the extra margin area is
not worth it. What is mentioned in the previous paragraph will be fast enough. However, if the
garden is large this extra margin will be relatively small and the savings of not recalculating the
entire disk will prevail. You can think about a rule when you want to switch from a simpler
algorithm to this one.

In garden.py we implement this shifting logic (without the logic of switching to a different
algorithm).

Python:

from _ future__ import print function
import math

import sys
import re

def read_input():
while True: # we'll try forever until we get correct input
try:
print ("Enter number of rows, columns and radius (integers separated by space):")
line = sys.stdin.readline()
matched = re.match ("*\\s* (\\d+) \\s+ (\\d+) \\s+(\\d+) \\s*$", line) # expecting 3 numbers

if matched:
n = int(matched.group (1))
m = int(matched.group(2))
r = int(matched.group(3))
else:

raise Exception("invalid input")

input garden map
a = [['.'" for j in range(m)] for i in range(n)]
print ("Enter your map with 'x' and '.' line by line:")
for i in range(n):

line = sys.stdin.readline() .rstrip('\n')

if len(line) > m:

raise Exception("line must not exceed m")
chs = list(line) # split line into characters

=0
for j in range(len(chs)):
if chs[j] == '.":
a[i][j] = 0 # dead spot
elif chs[j] == 'x':
a[i][j] = 1 # living spot
else:
raise Exception("line must contain only 'x' or '.'")

for j in range(len(chs), m):
a[i][j] = O # user didn't type white spaces at the end; defaulting to '.'

return(n, m, r, a)
except Exception as e:
print("{}; try again".format(e))
pass

def read_input_ fixed():
=6

=7

=2
[fo,o0,1,0,0,0,11,
[o,1,1,0,0,1,0],
[o,0,0,1,0,0,13,
[0,1,0,0,0,0,0],
[0,0,1,0,0,1,1],
[1,0,0,1,0,1,0]1]
return(n, m, r, a)

» B 8 B
|

calculate boundary of a half circle of radius "r"

def calc_boundary(r):
b = [math.floor (math.sqrt(r**2 - (i-r)**2)) for i in range(2*r+l)]
return b

scan the entire garden area "a" putting a sprinkler with radius "r" into all cells
for efficiency use boundary indices "b"
return matrix "counts" that for each sprinkler position contains number of watered plants
def scan_area(r, al, b):

assert(len(b) == 2*r+l)

we assume (0,0) is at the left top corner

our margin size is 2*r

n = len(al) + 4*r

m = len(al[0]) + 4*r + 1 # +1, so we always have previous

counts = [[0 for j in range(m)] for i in range(n)] # initialize

a = [[0 for j in range(m)] for i in range(n)] # new garden with margin

copy original garden: a[2*r:n-2*r] [2*r+l:m-2*r] = al[:][:]

for i in range(len(al)):

for j in range(len(al[0])):
a[i+2*r] [j+2*r+1] = al[i] []]

for i in range(r, n-r): # scan row by row
for j in range(r+l, m-r): # column by column
count = counts[i] [j-1] # previous value from left cell
for k in range(len(b)):
x=1i-r+k # add plants on the right semicircle
y = J + b[k]
count += a[x][y]
#x =i -r + k # subtract plants on the left semicircle
y=3-blk] -1
count -= a[x][y]
count += a[i][j-1] # restore killed plant by previous sprinkler
count -= a[i][]j] # possibly kill plant by current sprinkler
counts[i] [j] = count

counts2 = counts[2*r:n-2*r] [2*r+l:m-2*r] # remove margin
counts2 = [[0 for j in range(len(al[0]))] for i in range(len(al))]
for i in range(len(al)):
for j in range(len(al[0])):
counts2[i] [j] = counts[i+2*r] [j+2*r+1]
return counts2

draw garden "a" with the sprinkler at [x,y] with radius "r"
def draw_garden(a, x, y, r):
print("garden with r = {}:".format(r))
for i in range(len(a)):
for j in range(len(a[0])):
dist = math.sqrt((x-i)**2 + (y-j)**2) # distance between the current point and the sprinkler
position
if abs(dist) < le-8: # "dist==0" is incorrect; you cannot "exact" compare float numbers in
computer !!
print('0', end='")
elif a[i][j] ==
if dist <= r:
print('X', end='")
else:
print('x', end='")
else:
print('.', end='")
print()
print()

HHHH

#n, m, r, a = read input()

n, m, r, a = read_input_fixed()

b = calc_boundary (r)

counts = scan_area(r, a, b)
assert(len(counts)==n and len(counts[0])==m)

find max index
maxx = max ([max(x) for x in counts])
try:

for i in range(n):

for j in range (m):
if counts[i] [j] == maxx:
raise Exception|()

except:

pass
print("max = {} at [{},{}]".format(maxx,i,j))

draw_garden(a, i, j, r)
print("end.")

Java:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class GardenMain {

private int n; // number of rows

private int m; // number of columns

private int r; // radius

private int[][] a; // garden map: 0 = dead spot, 1 = living plant

private int[] b; // semicircle boundary

private int[][] counts; // for each sprinkler position contains number of watered plants
private int maxx = 0; // (lst) max number of living plants covered by sprinkler
private int maxi = 0; // its index

private int maxj = 0; // its index

public int getMaxX() { return maxx; }
public int getMaxI() { return maxi; }
public int getMaxJ() { return maxj; }

public void readInput() throws IOException {
BufferedReader br = new BufferedReader (new InputStreamReader (System.in)) ;
Pattern p = Pattern.compile ("*\\s* (\\d+) \\s+ (\\d+)\\s+(\\d+)\\s*$"); // 3 integers (n, m, r)
for(;;) { // we'll try forever until we get valid input
// read input line
System.out.println("enter n, m, r separated by white space:");
String line = br.readLine() ;
Matcher mt = p.matcher(line) ;
if (!mt.matches())
System.out.println("invalid input; try again");
else {
n = Integer.parselnt(mt.group(l))

Integer.parselnt (mt.group(2));

L]
]

Integer.parselnt (mt.group(3));

new int[n] [m];

System.out.println("enter garden map with 'x' and '.' line by line:");
int i;
loops:
for (i=0; i<n; i++) {
line = br.readLine() ;
if(line.length() !'= m) {
System.out.println("length must be "+m) ;
break loops;
}
for (int j=0; j<m; j++) {
char ch = line.charAt(j):;

if(ch == '.")
a[i][j] = 0; // dead spot
else if(ch == 'x")

a[i]l[j] = 1; // living spot

else {
System.out.println("invalid character "+ch);
break loops;

}
if (i == n)
return; // got valid input

public void readInputFixed() {

n==6;
m=7;
r =2;
a = new int[][] {{0,0,1,0,0,0,1},

{0,1,1,0,0,1,0},
{0,0,0,1,0,0,1},
{0,1,0,0,0,0,0},
{0,0,1,0,0,1,1},
{1,0,0,1,0,1,0}};

// calculate boundary of a half circle of radius "r"
public void calcBoundary() {
b = new int[2*r+1];
for (int i=0; i<2*r+l; i++)
b[i] = (int)Math.floor (Math.sqrt (r*r - (i-r)*(i-r)));

// scan the entire garden area "a" putting a sprinkler with radius "r" into all cells
// for efficiency use boundary indices "b"
// calculates matrix "counts" that for each sprinkler position contains number of watered plants
public void scanArea() {
assert(b.length == 2*r+l);
// we assume (0,0) is at the left top corner
// our margin size is 2*r

int n2 = n + 4*r;
int m2 = m + 4*r + 1; // +1, so we always have previous
int[][] counts2 = new int[n2][m2]; // initialized to 0 by default
int[][] a2 = new int[n2][m2]; // new garden with margin
// copy original garden: a[2*r:n-2*r][2*r+l:m-2*r] = al[:][:]
for (int i=0; i<n; i++) {

for (int j=0; j<m; j++) {

a2[i+2*r] [j+2*r+1] = al[i][j];

for (int i=r; i<n2-r; i++) { // scan row by row
for (int j=r+l; j<m2-r; j++) { // column by column
int count = counts2[i][j-1]; // previous value from left cell
for (int k=0; k<b.length; k++) {
int x =i - r + k; // add plants on the right semicircle
int y = j + b[k];
count += a2[x][y]’
y =3 - blk] - 1;
count -= a2[x][y];

}

count += a2[i] [j-1]; // restore killed plant by previous sprinkler
count -= a2[i] [j]; // possibly kill plant by current sprinkler
counts2[i] [j] = count;

}
// remove margin: counts2 = counts[2*r:n-2*r] [2*r+l:m-2*r]
counts = new int[n][m];
for (int i=0; i<n; i++) {
for (int j=0; j<m; j++) {
counts[i] [j] = counts2[i+2*r] [j+2*r+l];

public void findMaxIndex () {
for (int i=0; i<n; i++) {
for (int j=0; j<m; j++) {
if (counts[i] [j] > maxx) {
maxx = counts[i] [j];
maxi = i;

maxj = j;

public void drawGarden() {
System.out.printf ("garden with r = %d\n", r);
for (int i=0; i<n; i++) {
for (int j=0; j<m; Jj++) {
double dist = Math.sqrt((maxi-i)* (maxi-i) + (maxj-j)* (maxj-3j)); // distance between the
current point and the sprinkler position
if (Math.abs(dist) < le-8) // "dist==0" is incorrect; you cannot "exact" compare float
numbers in computer !!!
System.out.print('0');
else if(a[i][j] == 1) {

if(dist <= r)
System.out.print('X'");
else
System.out.print('x');
}
else
System.out.print('."');
}
System.out.println() ;

}
System.out.println() ;

public static void main(String[] args) throws IOException {
GardenMain garden = new GardenMain() ;
//garden.readInput() ;
garden.readInputFixed() ;
garden.calcBoundary () ;
garden.scanArea () ;
garden. findMaxIndex() ;
System.out.printf("max = %d at [%d,%d]\n", garden.getMaxX(), garden.getMaxI(),
garden.getMaxJ()) ;
garden.drawGarden () ;

