

MATHEMATICS

5 points:
An ancient ruler has decided to build a Geometry Temple in the form of a square-base pyramid
made up of cubes with a side of 1 meter (as illustrated below). The Temple has 100 layers,
where the bottom layer is 100x100 meters and the top layer is a single cube. The surface of the
Temple is supposed to be covered with gold. What is the total area of gold foil that is needed in

order to accomplish this?

Hint: ​​Consider projections of the pyramid from the top and from the sides.

Answer:​​ 30,200 m​2​.

Solution:

The total area of the surface of the pyramid equals to the total area of its projections from the
top (left part of the figure) and from the four sides.Note that it is convenient to displace all layers
of the pyramid to one side, say to the far left side of the bottom layer, so that the vertical edges
of all cubes on far left are positioned on a single vertical line. This does not change neither the
volume of the pyramid, nor the total area of its surface. The area of the top projection is

. The combined area of the two side projections is shown in the top figure00 00 0, 00 m1 × 1 = 1 0 2
on the right and equals to . Hence, the total area of the surface of the00 01 0, 00 m1 × 1 = 1 1 2
Temple is .0, 00 0, 00 0, 00 m1 0 + 2 × 1 1 = 3 2 2

10 points:
While designing the Geometry Temple, a square pyramid made of identical cubes (such as
shown in Figure above), the ancient architect had to count the total number of cubes that were
needed. In trying to do so for the large, multi-layer pyramid, (s)he discovered the following
remarkable relation, which simplified the task:

 .. n) n) n) .. 2n)12 + 22 + 32 + . + n2 = 1 · n + 3 · (− 1 + 5 · (− 2 + 7 · (− 3 + . + (− 1 · 1
Prove this equality.

Hint:
As you probably noticed, the problem is about counting the number of cubes in the pyramid.
The left part of the equality counts the number of cubes in the pyramid, layer-by-layer along the

vertical direction, starting from the smallest 1-cube layer at the top, to the widest, 100-cube layer
at the bottom. Obviously, widest-to-narrowest layer is not the only way to group the cubes for
counting. Try to figure out whether a grouping exists that would yield the right-hand part.

Solution:
It is convenient to displace all layers of the pyramid to one side, say to the far left side of the
bottom layer, so that the vertical edges of cubes on far left in all layers are positioned on a
single vertical line. This simplifies counting the number of cubes in an n-layer pyramid column
by column, beginning with the tallest, n-cube column of 1 cube, then n-1 cube tall column having
4-1 = 3 cubes in each layer, then n-2 tall column with 3​2​-2​2​ = 5, and so on, down to a 1-cube tall
column having n - (n-1)​2​ = 2n - 1 cubes. Hence, the total number of cubes in the pyramid yields
the right side of the equality.

 PHYSICS

5 points:

The bottom of a cylindrical vessel submerged in water is not
attached (see the figure). Find the maximum mass of sand that
can be poured into the vessel until the bottom falls off. Radius
of cylinder is ​R=2 cm​​. The vessel’s position is fixed, with its
bottom located at depth ​h=10 cm​​. Neglect the mass of the
bottom.

Hint: ​​The bottom is kept in place because of the hydrostatic
pressure. You can google (or derive) a formula for this
pressure at depth ​h​​.

Answer: .26 gram 1

Solution:​​ ​The hydrostatic pressure at depth is where is the density ofh gh ρ g/cm ρ = 1 3
water. The force acting on the bottom is therefore . At the moment when the bottom fallsR ρghπ 2
out, this force must be equal to weight of the send, . Hence, g M R ρh 126 gram. M = π 2 ≈

10 points:

A vessel is made of two connected
cylindrical parts of radii ​R (lower) and ​2R
(upper), as shown in figure. It freely floats in
water, but the bottom of the lower cylinder is
not attached. Initially, the bottom is at depth
h​​. The lower cylinder is being filled with
sand until the bottom falls off. Find how
deep in water the bottom of the vessel was
right before this happened. Neglect the
mass of the bottom.

Hint: ​​There are two parts here. First, you can find how much deeper the vessel will move
when sand of mass M is added (use Archimedes principle). Second, similarly to 5 pt. Problem,
you can find the hydrostatic pressure near the bottom of the vessel and relate it to the mass M (
at the moment when the bottom falls off, the weight of the send becomes slightly bigger that the
hydrostatic force which pushes the bottom upward).

Answer: h/3H = 4

Solution: ​​When sand of mass M is added, the vessel should move down by amount

, to compensate the extra weight with buoyancy force. Here is/ H − h = M 4πR ρ(2) g/cm ρ = 1 3

the density of water, is new depth of the bottom. Similarly to 5pt problem, the hydrostatic H
pressure at that depth should be enough to hold the mass : . The bottom falls M R ρgH gπ 2 > M
off once this inequality is violated, i.e.
 .R ρH πR ρ π 2 = M = 4 2 (H)− h
Here we have used the relationship between and that we derived earlier based on H M
buoyancy consideration. We conclude that , i.e. . H = 4 (H)− h h/3H = 4

CHEMISTRY

5 points:
Alice, a college faculty, asked Bob, her technician, to prepare 1 M solution of CsCl for tomorrow
experiments. Next day, when Alice started to use the solution prepared by Bob, she noticed
something is wrong with it. “Bob, how did you prepare this solution?” - she asked. “Alice, there
was no cesium chloride in the lab, so I decided to prepare the solution from available chemicals.
I took one kilogram of 1 M HCl solution and one kilogram of 1 M CsOH solution and mixed them
together.” “Oh, now I see”, - Alice said. “We definitely cannot use this solution and should
probably make another solution.”
Can you explain why the solution prepared by Bob is not good, which mistakes had he made,
and how could did Bob fix them?

Hint:
Bob made at least three mistakes. The least obvious is that some water forms in a reaction
between CsOH and HCl. Another mistake is that he mixed solutions by weight, whereas 1M
means “one mole of a substance per 1 ​liter of a solution”. Try to figure out the last mistake. If you
were Alice, and you decided to fix the Bob’s error by adding some chemicals to the solution he
prepared, what additional information would you have to know?
Solution:
By mixing ​equal volumes 1 M solutions of HCl and CsOH, one obtain ​approximately ​a 0.5 M
solution of CsCl.

Bob also forgot that one mole of water forms in a reaction between one mole of HCl and one
mole of CsOH according to the reaction:
 CsOH + HCl → CsCl + H​2​O
so the amount of water slightly increases, and CsCl concentration drops accordingly.

However, the major Bob’s mistake was that he forgot that the molar concentration is defined as
one mole of a compound X in ​one liter of a solution, not ​one kilogram of a solution​. One liter of
1M CsOH and 1M HCl contain 150 and 36.5 grams of CsOH and HC, accordingly, and by mixing
them, Bob would have obtained exactly one mole of CsCl (although the volume of this solution
would be approximately 2 liters, so he would have to evaporate it to 1 L to get a 1 M CsCl
solution). However, he took not 1 liter of each solutions, but 1 ​kilogram ​of them. How much of
CsOH and HCl are there? Let’s try to figure it out.
The density of 1 M HCl is very close to that of water. It is googlable: 1 M HCl is approximately
3.5% HCl, and its density is 1.01 kg/L, so we can safely assume that one kilogram of 1 M HCl
contains one mole of HCl. That means it would not be a big mistake to take one kilogram of 1M
HCl instead of 1 liter. What about CsOH? The density of its solution is considerably higher.
Thus, 50% solution of CsOH (500 g of CsOH in 500 g of water) has a density of 1.72 kg/L. For
1M CsOH, the density is about 1.1 - 1.2 kg/L (assuming that the density depends almost linearly

on CsOH concentration). What does it mean? That means, ​one kilogram of 1 M CsOH solution
corresponds to approximately 0.8 - 0.9 liters of it. ​In other words, when Bob mixed these two
solutions 1 : 1 by mass, the ratio by volume was in between 1 : 0.8 and 1: 0.9. In other words,
the resulting solution has an excess of HCl, so it is strongly acidic, which, obviously, is something
Alice definitely didn’t want to have.

How could Bob fix it? Arguably, the least complicated way would be to evaporate the solution
obtained to almost complete dryness, filter out the liquid, dry the crystals, and prepare the
solution by weighing an exact amount of CsCl, dissolving it in water and adjusting the volume of
the solution to some exact value (for example, to one liter if one mole of CsCl was taken).

10 points:
"​We had two bags of copper chloride, seventy-five ounces of aluminum pellets, five kilograms of
high purity citric acid, a saltshaker half-full of mercuric chloride, and a whole galaxy of
multi-colored pH papers, rubber balloons, strings etc... Also, a quart of isopropanol, a quart of
acetone, a case of Poland Spring water, a pint of raw ether, and two dozen grams of isoamyl
alcohol. Not that we needed all that for an air trip, but once you get locked into a serious
chemicals collection​,​ the tendency is to push it as far as you can. The only thing that really
worried me was the ether. There is nothing in the world more helpless and irresponsible and
depraved than a man in the depths of an ether binge, and I knew we'd get into that rotten stuff
pretty soon.​"

Using the stuff described in this quote, can you launch your iPhone to the sky? Which items
listed there are needed for that, and how will you do that?

Hint:
Obviously, the only way to do that using the items from this set is to prepare hydrogen. Usually,
if you have some metal and some acid, the idea that comes first is to mix them. However, that
will not work in that case: citric acid is too weak to react with aluminium. In addition, aluminium
is covered with a thin but very stable film of aluminium oxide that makes it very stable. However,
if you find a way to peel this film off the aluminium’s surface, it will react even with water, and a
lot of hydrogen will form. The only thing you need to do is to figure out how can this aluminium
oxide film be removed.
Solution:
How can aluminium be activated? You have two different chemicals in your set to do that. Take
cupric chloride, dissolve in water (add several teaspoons of this salt directly to the Polar Spring
bottle and shake) and add aluminium pellets. Aluminium will react with cupric chloride, and
copper metal will precipitate on the metal surface:

3CuCl​2​ + 2Al → 2AlCl​3​ + 3 Cu

For some reason, a protective aluminium oxide film, which perfectly protects aluminium metal
from reaction with water or air, does not protect aluminium from cupric chloride. Copper
precipitates as a very loose sponge that easily peels off the aluminium surface and exposes the
naked aluminium to water. When deprived of the oxide protection, aluminium reacts as
vigorously as calcium, and one and half mole of hydrogen forms per one mole (or 25 grams) of
aluminium:

2Al + 6H​2​O → Al(OH)​3​ + 3H​2

Interestingly, the first reaction (with copper) is needed just to initiate the second one, so once
aluminium is cleaned off the oxide film, it starts to dissolve quickly, and we can assume that
almost all reacted aluminium produce hydrogen, and the amount of copper is minimal.

One mole of hydrogen (as well as of any other gas) occupies 22.4 L at normal pressure and
room temperature. The “molar mass” of air is 29, which means that 22.4 L of air weigh 29 g, and
the same volume of hydrogen weighs 2 g, so each mol of hydrogen lifts 29-2=27 grams. We can
transform it directly to the mass of aluminium: 25 g of aluminium produce 1.5 × 2 = 3 g of
hydrogen, which is capable of lifting 1.5 × 27 = 41.5 grams.
Assuming that iPhone weighs ca 200 g, we need about 125 grams of aluminium, which is much
less than 75 ounces.

The same trick can be done using mercury chloride. Like cupric salts, mercury salts react with
aluminium, and, since mercury is liquid, it does not protect aluminium surface, but it does prevent
formation of a protective layer. By adding a little bit of mercic chloride to the Poland Spring bottle
and dropping aluminium pellets, you initiate a vigorous reaction between aluk=minium and water
(see the above equation). The only thing you need is just to attach a balloon to the bottle’s neck
and see how hydrogen is inflating it.

BIOLOGY

5 points:
During a study of some exotic ecosystem, a group of biologists identified three species (A, B,
and C) that normally coexist in this ecosystem. All three species are essential components of the
ecosystem. To identify their role, the researchers created an artificial ecosystem that was
composed of these three species, and made the following observations:

- Light is essential for a normal growth of this ecosystem;

- Removal of 90% of A from the ecosystem leads to a sharp decrease of the population of
B and an increase of the population of C;

- Removal of 90% of B from the ecosystem leads to a sharp increase of the population of A

and decrease the population of C;

- Removal of 90% of C from the ecosystem leads to an increase in the population of A and
an increase of the population of B.

Only short-term effects were measured in these experiments.

Based on these data, propose a possible architecture of the food chain in this ecosystem and
guess what type of organisms the species A, B, and C are.

Hint:
Assume that the only ways of interaction between these three species in this ecosystem are
competition and predator-prey relationship.

Solution​​:
In this ecosystem, B eats A, and A and C compete for the same resource (for example, both A
and C are plants, but B cannot eat C).

10 points:
A research ship​ HMS Beagle-3 ​arrived at a tropical archipelago ​Larva-y-Escarabajo​, where
professor Gaze discovered two new amphibia species. They looked like a newt or salamander,
both of them were of the pretty much the same size, but one species had a pale yellow ​color​,
whereas the second one was dark-brown. Prof. Gaze found that both species prefer to lay eggs
in the small pond, and, although the pale-yellow spice preferred to spend more time in the water
than the brown one, he suggested these two amphibia may compete with each other. "If this is
so," - argued the ecologist, - "the reduction in the number of pale-yellow newts will improve the
living conditions for the brown one, and their population will increase."

Gaze arranged many traps along the island. He released the all brown newts that were caught,
collected the pale-yellow ones and released them on another island of the archipelago. Thus, he
managed to reduce the population of pale yellow newts by 90 ​percent​.
When a year later, Gaze returned to the island, he was surprised to find that the number of
brown newts did not increase, but it decreased significantly.

How can you explain this apparent contradiction of Prof. Gaze's hypothesis and his subsequent
observation?

Hint:
What if these two newts are not two different species? Obviously, the idea about a sexual
dimorphism is too straightforward, and prof. Gaze checked this hypothesis first, and ruled it out.
Do you know other examples (especially in amphibia) when animals belonging to the same
species look very differently?

Solution:
The very name of the archipelago is a hint, because it Spanish it means “A larva and a beetle”.
Pale newts and brown newts are the same species, but pale newts are larvae, whereas brown
ones are adult animals. Larvae of amphibia are primarily aquatic, and in some species, for
example, tiger salamanders, they may become sexually mature while in their larval form, without
transformation into an adult form (metamorphosis). That may occur in certain environmental
conditions (for example, in some ponds on this island), whereas in other conditions (in other
ponds) they can metamorphose to adult animals, that is why Prof Gaze observed both “pale
newts” and “brown newts” on this island. He probably observed the process of reproduction of
larvae in one pond and concluded that, since these “pale newts” are capable of self-reproduction,
they are adults animals. Obviously, if he removed almost all “pale newts” from the island, the
reproduction of adult (brown) animals stopped.

COMPUTER SCIENCE

● Your program should be written in Java or Python
● You can write and compile your code here:

http://www.tutorialspoint.com/codingground.htm
Please note that ​codingground​ site modified its structure and now all the input for
the program run is entered on a separate tab. This is convenient as the same
input can be used across multiple runs without re-entry

● No GUI should be used in your program: eg., easygui in Python. All problems in
POM require only text input and output. GUI usage complicates solution
validation, for which we are also using ​codingground​ site. Solutions with GUI will
have points deducted or won’t receive any points at all.

● Please make sure that the code compiles and runs on
http://www.tutorialspoint.com/codingground.htm​ before submitting it.

● Any input data specified in the problem should be supplied as user input, not
hard-coded into the text of the program.

● Submit the problem in a plain text file, such as .txt, .dat, etc.
No .pdf, .doc, .docx, etc!

Common introduction:

Sigma Kingdom has N cities connected by some roads. Your program will receive a map of
Sigma Kingdom on input. There, first a number of lines in the map will be provided, followed
by that number of lines, containing the following characters:

- Letters A to Z indicate locations of cities (Sigma is a small kingdom, and it can not
have more than 26 cities)

- Roads in Sigma Kingdom go strictly horizontally, indicated by character ​-​​; vertically,
indicated by character ​|​​; or diagonally, indicated by characters ​/​​ and ​\​​. All the roads in
Sigma Kingdom connect exactly two cities. There are no roads going from or to nowhere:
there is always a city at each end of the road.

- Some roads may change the direction by going through a junction. Junctions, which
never overlap, are indicated by character +.

http://www.tutorialspoint.com/codingground.htm
http://www.tutorialspoint.com/codingground.htm
http://www.tutorialspoint.com/codingground.htm

Here are some valid roads:
 A--B

 | / \

 |/ \

 C +--D

In this example A is connected to B and C, C is connected to A and B, and B is connected to
A, C and D.

Roads can cross, one going over the other, but they cannot go over or under a city. This is a
valid map:
 B

 A |

 \ |

 \|C

 \|

H---|\----D

 ||\

 || \

 G| \

 | E

 F

Junctions cannot be located at a point of intersection of 2 or more roads.

This is also valid – A and B are connected:
 D F H J

 A-|\-|\-|\-|-B

 | \| \| \|

 C E G I

Junctions cannot touch anything but two road segment they join: they cannot touch cities or
other roads. Thus, this is not valid:
 BC

A ||

 \ ||

 +||--D

 ||

 FE

but this is fine:
 BC

A ||

 \ ||

 +-||--D

 ||

 FE

5 points:

Based on the map received by your program from input, figure out and output which of the cities
in Sigma Kingdom is the most connected one (has most of the roads going to/from it).

Hint:
Count the number of roads (-, |, /, \) immediately surrounding a town.

Solution:
""

Find the most connected city.

For example,

 B

 |C-I

H-A-G ||\

 \ || J

 \ ||

 +||--D

 ||

 EF

python 3

"""

import string

map = [[' ', ' ', ' ', ' ', ' ', ' ', 'B'],

[' ', ' ', ' ', ' ', ' ', ' ', '|', 'C', '-', 'I'],

['H', '-', 'A', '-', 'G', ' ', '|', '|', '\\'],

[' ', ' ', ' ', '\\',' ', ' ', '|', '|', ' ', 'J'],

[' ', ' ', ' ', ' ', '\\',' ', '|', '|'],

[' ', ' ', ' ', ' ', ' ', '+', '|', '|', '-', '-', 'D'],

[' ', ' ', ' ', ' ', ' ', ' ', '|', '|', ' '],

[' ', ' ', ' ', ' ', ' ', ' ', 'E', 'F', ' ', ' ', ' ']]

m = len(map)

roads = ['-', '|', '\\', '/', '+']

cities = list(string.ascii_letters)

valid_legend = roads + [' '] + cities

m = int(input("enter number of rows: ").strip())

map = []

for i in range(m):

 line = input("enter %dth row: " % (i+1))

 xs = list(line)

 # some verification here; more checks are in the 10 pointer problem

 for j in range(len(xs)):

 if xs[j] not in valid_legend:

 print("invalid map symbol '%s' at position %d" % (xs[j], j))

 exit(1)

 map.append(xs)

city_count = {}

find the most connected city on the map

for i in range(m):

 for j in range(len(map[i])):

 if map[i][j].isalpha(): # is a city

 city = map[i][j]

 # check around

 count = 0

 if 0 <= i-1 and 0 <= j-1 < len(map[i-1]) and map[i-1][j-1] == '\\': count += 1

 if 0 <= i-1 and j < len(map[i-1]) and map[i-1][j] == '|' : count += 1

 if 0 <= i-1 and j+1 < len(map[i-1]) and map[i-1][j+1] == '/' : count += 1

 if j+1 < len(map[i]) and map[i][j+1] == '-' : count += 1

 if i+1 < m and j+1 < len(map[i+1]) and map[i+1][j+1] == '\\': count += 1

 if i+1 < m and j < len(map[i+1]) and map[i+1][j] == '|' : count += 1

 if i+1 < m and 0 <= j-1 < len(map[i+1]) and map[i+1][j-1] == '/' : count += 1

 if 0 <= j-1 and map[i][j-1] == '-' : count += 1

 city_count[city] = count

print(city_count)

sorted_by_count = sorted(city_count.items(), key=lambda kv: -kv[1])

print(sorted_by_count)

print("most connected cities are:")

if len(sorted_by_count) > 0:

 mx = sorted_by_count[0][1] # largest city count

 for i in range(len(sorted_by_count)):

 if sorted_by_count[i][1] < mx: break

 print("%s has %d roads" % (sorted_by_count[i][0], int(sorted_by_count[i][1])))

exit(0)

10 points:
Given the map of Sigma Kingdom, which your program will get on input, print out connectivity
table for Sigma Kingdom. This square table will have all Sigma cities as the names of rows and
columns. Then each (i,j) cell would contain 1 if ​i​-th city is connected to ​j​-th city and 0 otherwise.
For example, the correct output for the first example above would be:

 ABCD

A 0110

B 1011

C 1100

D 0100

Hint:
Starting from each town, follow each road emanating from it by keeping the direction until you
reach another town or a junction. If you reach a junction, find a road coming out of it distinct
from the road you arrived from, then keep moving in the new direction until you reach a town or
another junction. When you reach a town, record that there is a connection between your
starting town and the destination town in your connectivity table.
Solution:
""

Print connectivity table.

For example,

 B

 |C-I

H-A-G ||\

 \ || J

 \ ||

 +-||--D

 ||

 EF

python 3

Note: a lot of error checking is omitted.

"""

import string

import numpy as np

map = [[' ', ' ', ' ', ' ', ' ', ' ', ' ', 'B'],

[' ', ' ', ' ', ' ', ' ', ' ', ' ', '|', 'C', '-', 'I'],

['H', '-', 'A', '-', 'G', ' ', ' ', '|', '|', '\\'],

[' ', ' ', ' ', '\\',' ', ' ', ' ', '|', '|', ' ', 'J'],

[' ', ' ', ' ', ' ', '\\',' ', ' ', '|', '|'],

[' ', ' ', ' ', ' ', ' ', '+', '-', '|', '|', '-', '-', 'D'],

[' ', ' ', ' ', ' ', ' ', ' ', ' ', '|', '|', ' '],

[' ', ' ', ' ', ' ', ' ', ' ', ' ', 'E', 'F', ' ', ' ', ' ']]

m = len(map)

valid_roads = ['-', '|', '\\', '/']

valid_cities = list(string.ascii_letters)

valid_legend = valid_roads + ['+'] + [' '] + valid_cities

def valid_road(i, j, offset_i, offset_j):

 if i+offset_i < 0 or i+offset_i >= m: return False

 if j+offset_j < 0 or j+offset_j >= len(map[i+offset_i]): return False

 if offset_i == -1:

 if offset_j == -1 and map[i+offset_i][j+offset_j] == '\\': return True

 if offset_j == 0 and map[i+offset_i][j+offset_j] == '|' : return True

 if offset_j == 1 and map[i+offset_i][j+offset_j] == '/' : return True

 elif offset_i == 0:

 if offset_j == 1 and map[i+offset_i][j+offset_j] == '-' : return True

 if offset_j == -1 and map[i+offset_i][j+offset_j] == '-' : return True

 elif offset_i == 1:

 if offset_j == 1 and map[i+offset_i][j+offset_j] == '\\': return True

 if offset_j == 0 and map[i+offset_i][j+offset_j] == '|' : return True

 if offset_j == -1 and map[i+offset_i][j+offset_j] == '/' : return True

 return False

def find_city(city):

 for i in range(m):

 for j in range(len(map[i])):

 if map[i][j] == city:

 return i, j

def delta(prev_row, prev_col, cur_row, cur_col, road):

 if road == '-':

 ki = 0

 kj = 1

 elif road == '|':

 ki = 1

 kj = 0

 elif road == '/' or road == '\\':

 ki = 1

 kj = 1

 else: raise Exception("invalid road segment")

 delta_i = cur_row - prev_row

 delta_j = cur_col - prev_col

 assert(abs(delta_i) == ki)

 assert(abs(delta_j) == kj)

 return delta_i, delta_j

def follow_yellow_brick_road(start_city, start_row, start_col, cur_row, cur_col,

delta_i, delta_j):

 print("following '%s' at %d, %d" % (map[cur_row][cur_col], cur_row, cur_col))

 visited[cur_row][cur_col] = 1

if cur_row+delta_i < 0 or cur_row+delta_i >= m or cur_col+delta_j < 0 or

cur_col+delta_j >= len(map[cur_row+delta_i]):

 raise Exception("reached end of map")

 if map[cur_row+delta_i][cur_col+delta_j] in valid_cities:

print("found emerald city %s at %d, %d" % (map[cur_row+delta_i][cur_col+delta_j],

cur_row+delta_i, cur_col+delta_j))

 start_i = cities_sorted.index(start_city)

 end_i = cities_sorted.index(map[cur_row+delta_i][cur_col+delta_j])

 connections[start_i][end_i] = 1

 connections[end_i][start_i] = 1

 return

 if map[cur_row+delta_i][cur_col+delta_j] == '+':

 return turn(start_city, start_row, start_col, cur_row+delta_i, cur_col+delta_j)

return follow_yellow_brick_road(start_city, start_row, start_col, cur_row+delta_i,

cur_col+delta_j, delta_i, delta_j)

def turn(start_city, start_row, start_col, cur_row, cur_col):

 print("turning on '%s' at %d, %d" % (map[cur_row][cur_col], cur_row, cur_col))

 visited[cur_row][cur_col] = 1

find 1st road around (not checking that there can be more roads which are not

allowed)

 for p in [-1, 0, 1]:

 for q in [-1, 0, 1]:

 if p == 0 and q == 0: continue

 if visited[cur_row+p][cur_col+q]: continue

 if 0 <= cur_row+p < m and 0 <= cur_col+q < len(map[cur_row+p]):

 if map[cur_row+p][cur_col+q] in valid_cities:

 raise Exception("city is not allowed by junction")

 if map[cur_row+p][cur_col+q] in valid_roads:

delta_i, delta_j = delta(cur_row, cur_col, cur_row+p, cur_col+q,

map[cur_row+p][cur_col+q])

return follow_yellow_brick_road(start_city, start_row, start_col,

cur_row+delta_i, cur_col+delta_j, delta_i, delta_j)

 raise Exception("didn't find a road to turn to")

m = int(input("enter number of rows: ").strip())

map = []

for i in range(m):

 line = input("enter %dth row: " % (i+1))

 xs = list(line)

 for j in range(len(xs)):

 if xs[j] not in valid_legend:

 print("invalid map symbol '%s' at position %d" % (xs[j], j))

 exit(1)

 map.append(xs)

find all cities

for performance we can just start scanning the map until a city found and explore the

roads immediately but let's opt for clarity

cities = set()

for i in range(m):

 for j in range(len(map[i])):

 if map[i][j] in valid_cities:

 cities.add(map[i][j])

cities_sorted = sorted(list(cities))

initialize the connectivity table

connections = np.zeros([len(cities), len(cities)], dtype=np.int8)

n = max([len(map[i]) for i in range(m)]) # max number of columns in map

for city in cities_sorted:

 # this will walk twice, e.g. from A to B and then from B to A

we can save the final city and the last road segment leading to it and skip walking

back

 # this is not implemented here

 row, col = find_city(city)

 print("starting in %s at %d, %d" % (city, row, col))

 visited = np.zeros([m, n], dtype=np.int8)

 visited[row, col] = 1

 # for all roads around the city

 for p in [-1, 0, 1]:

 for q in [-1, 0, 1]:

 if p == 0 and q == 0: continue # that's where the city is

 if valid_road(row, col, p, q):

 delta_i, delta_j = delta(row, col, row+p, col+q, map[row+p][col+q])

 follow_yellow_brick_road(city, row, col, row+p, col+q, delta_i, delta_j)

print("rows/columns: %s" % cities_sorted)

print(connections)

exit(0)

