
The Maze Runner

Alexander Kirillov

URL: http://sigmacamp.org/mazerunner

E-mail address: shurik179@gmail.com

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter
to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. If you
distribute this work or a derivative, include the history of the document.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Introduction

This document describes a robotics project: building and programming a robot which can find its
way out of a maze. This was one of the projects done by students at SigmaCamp (sigmacamp.org),
a summer science camp. Students were using LEGO NXT sets and programmed them in RobotC.

Description of the challenge. The maze is made of 4× 8 ft sheet of plywood, divided (by pencil
marks) into 1 ft squares. The surface was painted black, with white masking tape (0.94 in wide)
running through the centers of each 1 ft square, forming a navigation grid. Between some squares,
there are walls made out of 5 in high boards; there are also walls along the perimeter of the plywood
(with one exit), turning the whole surface into a maze. The figure below shows a typical maze (to
better see the walls, maze surface is shown as gray; in real life, it was black).

The goal is to build and program a robot to find its way out of the maze, using one of the three
algorithms described at the end of this document. Students were given the building instructions for
the robot, a RobotC primer by Alexander Kirillov, and laptops with RobotC 4.10 (Release Candidate
version) and with “natural language” function library, described in the primer.

This document details lesson-by-lesson progress of the challenge. Note that some things de-
scribed here are an improved version of what was actually done in SigmaCamp.

You can download all the files necessary for this project (building instructions, sample programs,
RobotC primer and function library) from http://sigmacamp.org/mazerunner.

sigmacamp.org
http://sigmacamp.org/mazerunner

Lesson 1 3

Lesson 1

Build the robot using the building instructions provided (see file building instructions.pdf).
Picture below shows the final result (without the cables).

Lesson 2 4

Lesson 2

• Basics of RobotC. Connecting the robot. First commands: motor[motorA]=100; and
wait1Msec(500);. Writing, downloading, and running the first program: have the robot
run for one second.

• Using Natural Language. Commands NLGoForward(distance), NLStopMotors(), and
NLTurnLeft(angle). Programming the robot to complete a 25-cm square (without us-
ing loops, just copy-and-paste 4 times).

• Basic control structures:� �
// if statements

if (condition) {

...

} else {

...

}

//while loops

while(condition){

...

}� �
• Sensors. Setting sensors using Robot→Motor and Sensor Setup tool. Determining

the reasonable value of the light cutoff (in this case, 40) by using View function of the
NXT.

• Using a light sensor to have the robot go forward until it detects a white line:� �
#pragma config(Sensor , S1 , LightSensor , sensorLightActive)

/*!!Code automatically generated by ’ROBOTC ’

configuration wizard !!*/

// natural language setup

float MOVEUNIT =21.1;

float TURNUNIT =2.12;

#include "nat_language.c"

task main (){

NLStartForward (50);// start forward at 50 % power

while (SensorValue[LightSensor] <40){

// do nothing

}

NLStopMotors ();

}� �

Lesson 3 5

Lesson 3

• while (true) loop. Following the line using two light sensors; in pseudocode, the program
is� �
while (true) {

if (both sensors see black) {

go forward

}

if (left sensor sees black, right sees white) {

go forward steering to the right

}

if (right sensor sees black, left sees white) {

go forward steering to the left

}

}//end of while loop� �
• Variables. Basic types of variables: int, float, bool. Replacing hard-coded value of light

cutoff (40) by a variable:� �
int LIGHT_CUTOFF =40;� �

Using a variable to break out of the loop:� �
bool AtIntersection=false;

while (! AtIntersection) {

if (both sensors see black) {

go forward

}

if (left sensor sees black, right sees white) {

go forward steering to the right

}

if (right sensor sees black, left sees white) {

go forward steering to the left

}

if (both sensors see white) {

AtIntersection=true;

NLStopMotors ();

}

}//end of while loop

NLGoForward (7); //to advance so that the center of the robot

//is at the intersection� �
• Functions. Turning the above piece of code into a function GoToIntersection(). Func-

tions with arguments.

Lesson 4 6

Lesson 4

• Using the Ultrasonic sensor. Coding the simplified wall following algorithm:� �
while (true){

if (US sensor doesn’t see a wall){

NLTurnLeft (90);

GoToIntersection ();

} else {

// a wall to the left - go forward

GoToIntersection ();

}

}//end of while loop� �
• Improving the above code, adding checks if there is a wall ahead; if there is, also checking

if there is a wall to the right:� �
while (true){

if (US sensor doesn’t see a wall){

NLTurnLeft (90);

GoToIntersection ();

} else {

// a wall to the left - check for wall ahead

turn sensor 90 deg

if (US sensor doesn’t see a wall) {

//wall to the left , no wall ahead

turn sensor 90 degrees back

GoToIntersection ();

} else {

// wall to the left and ahead;

// need to check for wall to the right

turn sensor all the way to the right

if (US sensor doesn’t see a wall) {

// no wall to the right

turn sensor back all the way to the left

NLTurnRight (90);

GoToIntersection ();

} else {

// walls on 3 sides - a dead end

turn sensor back all the way to the left

NLTurnRight (180);

GoToIntersection ();

}

}

}

}//end of while loop� �
Common problem: rotating the sensor back 90 degrees sometimes fails, as the sensor

can never complete the rotation and the program is stuck. Solution: rotate by time or use
NLSafeRotateMotor().

Lesson 5 7

Lesson 5

• Improving the line follower algorithm: instead of nested ifs, use a function TurnAlongWall():� �
void TurnAlongWall (){

if (US sensor doesn’t see a wall){

NLTurnLeft (90);

return ;

}

turn sensor 90 deg

if (US sensor doesn’t see a wall) {

//wall to the left , no wall ahead

turn sensor 90 degrees back

return;

}

//if we are here , we have a wall to the left and ahead

turn sensor all the way to the right

if (US sensor doesn’t see a wall) {

// no wall to the right

turn sensor back all the way to the left

NLTurnRight (90);

return;

} else {

// walls on 3 sides - a dead end

turn sensor back all the way to the left

NLTurnRight (180);

return;

}

}//end of TurnAlongWall

task main{

while (true) {

TurnAlongWall ();

GoToIntersection ();

}

}� �
(This is not a complete program: it is missing sensor and natural language setup

instructions).

• Ultrasonic Sensor readings are not quite reliable. To fix this, one can take three readings,
wiggling the sensor a bit in between; if at least one of the readings is below the cutoff,
there is a wall. The simplest way to do it would be to create a function SeeWall(), which
would return a boolean value.

A final version of the wall follower program, with all the improvements above, is at-
tached as WallFollower.c

Note that wall follower algorithm has it drawbacks. If you enter the maze from the
outside and travel in it always using the wall follower algorithm, you are guaranteed to find
your way out. However, if you start in the middle of the maze, you might not be able to

Further challenges: Pledge algorithm 8

get out using the wall follower algorithm: you could be going in circles around an “island”
in the middle of the maze.

Further challenges: Pledge algorithm

(We didn’t have time to cover this in SigmaCamp.) To fix the problems with the wall follower
algorithm, one could use the Pledge algorithm, described at the end of this document. To code it,
we introduce a global variable TotalTurns; every clockwise turn by 90 degrees increases the variable
by 1, and every counterclockwise turn, decreases by 1. The overall structure of the program should
be� �
// pragma statements - sensor setup

// natural language setup

int TotalTurns =0;

void GoToIntersection (){

...

}

void TurnAlongWall (){

...

}

// follows wall until total number of turns is zero

void FollowWall (){

...

}

//goes forward until it meets the wall

void ForwardToWall (){

...

}

task main{

while (true) {

ForwardToWall ();

NLTurnRight (90); TotalTurns=TotalTurns +1;

FollowWall ();

}

}� �
The most difficult part is function FollowWall(), which would be essentially the same as wall

follower algorithm of the previous program, stopping when TotalTurns is zero.

A full version of the program is available as PledgeAlgorithm.c

Mapping the maze 9

Mapping the maze

One can add to any of the previous algorithms the ability to record one’s travel and build the map
of the maze. Here is one strategy.

(1) We represent the maze as a grid of vertices (intersections), each having two coordinates:
x and y. We take the original position of the robot to be (0,0), and direction to be the
positive direction of y axis (“north”).

(2) Vertices are connected by passages. We will record information about the maze by recording
the status of each passage. Possible values are “BLOCKED” (passage is missing, or blocked
by a wall), “UNKNOWN”, “TRAVELED”, etc.

(3) We will have global variables position_x, position_y, direction, describing robot’s
position and direction. All functions causing the robot to move/rotate will update these
variables accordingly.

It is natural to divide the problem in two stages:

(1) Find a way to store information about passages and write functions for basic manipulations
of this data, such as setting or reading the status of a passage

(2) Modify one of the previous programs for maze navigation so that it records and later prints
information about the maze, using the functions described in the previous step

These two stages can be done independently of each other. The second, higher level stage, which
uses functions like “label the passage from point (x,y) in the direction d with status s” does not
need to know the details of where and how these statuses are stored. The only thing it needs is the
list of available commands together with their exact syntax and list of arguments. In programming,
this is usually referred to as API (application programming interface).

API. So here is the API:� �
// Possible directions: NORTH , SOUTH , EAST , WEST

// Possible statuses: BLOCKED , UNKNOWN , OPEN , TRAVELED

// Functions:

/* **************************

* Direction -related functions

***************************** */

int left_of(int dir){

...

}//end of left_of ()

int right_of(int dir){

...

}//end of right_of

int opposite_of(int dir){

...

}//end of opposite_of

Mapping the maze 10

/* ************************

* Maze map related -functions

* ************************ */

/* ************************

* Initializes the map ,

* setting status of each passage to UNKNOWN

* ************************ */

void initialize_map (){

...

}

/* ************************

* Sets the status of a passage going from vertex (x,y)

* in direction dir

* ************************ */

void set_status(int x, int y, int dir , int status){

}

/* ************************

* Returns the status of a passage going from vertex (x,y)

* in direction dir

* ************************ */

int get_status(int x, int y, int dir){

...

}

/* ************************

* Prints the map to NXT screen

* ************************ */

void print_map (){

...

}� �
A note on data types: there are two approaches. The simple one is to use integers to represent
different directions (e.g., 0=NORTH, 1=EAST...) and similarly for statuses. The problem with this
is that the program is difficult to read; at all moments we need to remember what integer value
represents what direction.

Another approach is to define a new data type and explicitly list what values variables of this
type are allowed to take. Both approaches are possible with RobotC. We choose an intermediate
approach: statuses and directions will be represented by integers; however, instead of writing say
direction=0;, we introduce named constants NORTH, SOUTH, EAST, WEST and only use them — we
will never use numbers such as 0 or 1 to represent directions. Similarly, we will use the following
named constants for status of a passage:

Mapping the maze 11

UNKNOWN – no information (passage not visited yet)

BLOCKED – passage does not exist (blocked by a wall)

OPEN – passage exists but not travelled yet

TRAVELED – passage traveled at least once

Implementation of the API. For first reading, you can skip this subsection and just use provided
file MazeMap.c, including it in the usual way: include ‘‘MazeMap.c’’. This file provides all the
functions listed above. If you want to write your own implementation, read on.

To implement the API, we need to find a way to store information about the passages. We
will use 2-dimensional arrays: one array to store information about vertical (north/south) passages,
another for horizontal (east/west) passages.

Since we can not create arrays of variable size, we need to know in advance what is the maximal
size of the maze. Therefore, we introduce a constant MAZE_RADIUS and allow coordinates of vertices
to range from -MAZE_RADIUS to MAZE_RADIUS. Since array index must be non-negative, we must do
some conversion between x and y coordinates and array indices. This leads to the following code� �
// directions

#define NORTH 0

#define EAST 1

#define SOUTH 2

#define WEST 3

// statuses

#define UNKNOWN 0

#define BLOCKED -1

#define OPEN 1

#define TRAVELED 2

//maze bounds

#define MAZE_RADIUS 7

#define MAZE_SIZE 15 //=2* MAZE_RADIUS +1

int vertical_passage[MAZE_SIZE][MAZE_SIZE];

/* ***********************************

* vertical_passage[u][v] contains status of the passage

* going up (NORTH)

* from vertex with coordinates x=u-MAZE_RADIUS , y=v-MAZE_RADIUS

* Thus , as u ranges from 0 to MAZE_SIZE -1=2* MAZE_RADIUS ,

* x will range from -MAZE_RADIUS to MAZE_RADIUS

* and similarly for y

* ********************************* */

int horizontal_passage[MAZE_SIZE][MAZE_SIZE];

/* ***********************************

* horizontal_passage[u][v] contains status of the passage

* going right (EAST)

* from vertex with coordinates x=u-MAZE_RADIUS , y=v-MAZE_RADIUS

* Thus , as u ranges from 0 to MAZE_SIZE -1=2* MAZE_RADIUS ,

* x will range from -MAZE_RADIUS to MAZE_RADIUS

Challenge for advanced students 12

* and similarly for y

* ********************************* */� �
Now the code for reading/setting the status is easy (just remember that the passage leading

south from (x,y) is the same as passage leading north from (x, y-1)).

To print the map, we will use the command drawLine(x0,y0,x1,y1), which draws a line from
point x0,y0 to x1,y1. Note that for NXT screen, x ranges from 0–99, while y ranges from 0–63,
so again, we need to convert maze coordinates to NXT display coordinates. Since our array indices
range from 0–2*MAZE_RADIUS, we should set one maze unit to be equal to step=63/(2*MAZE_RADIUS)
(note that it is integer division!), which for MAZE_RADIUS=7 gives step=4. Now the conversion from
array indices (u,v) to screen coordinates (x,y) will be x=u*step, y=v*step.� �
void print_map (){

int step =63/(2* MAZE_RADIUS);

int u,v;

eraseDisplay ();

for (u=0; u<MAZE_SIZE; u++) {

for (v=0; v<MAZE_SIZE; v++) {

if (horizontal_passage[u][v]== TRAVELED) {

drawLine(u*step ,v*step ,(u+1)*step ,v*step)

}

if (vertical_passage[u][v]== TRAVELED) {

drawLine(u*step ,v*step , u*step ,(v+1)* step)

}

}

}

}� �
Using the API for maze navigation. Thsi part is easy. We take a maze navigation program
such as WallFollower.c and modify it, introducing global variables� �
int position_x =0, position_y =0, direction=NORTH;� �
and every time we make a turn, we update the variable direction; for example, we replace
NLTurnLeft(90) by NLTurnLeft(90); direction=left_of(direction);. We also add to function
GoToIntersection() code to mark the passage we just used as traveled, and update the variables
position_x, position_y. Finally, after traveling each passage we will print a map to NXT screen
using the function print_map().

The final program is attached as file WallFollowerWithMap.c.

Challenge for advanced students

Combining (and modifying as necessary) the pieces above, write an implementation of the Trémaux’s
algorithm.

Maze algorithms 13

Maze algorithms

Wall follower. Start following passages, and whenever you reach a junction always follow the
leftmost open passage. This is equivalent to a human walking in the a maze by putting their hand
on the left wall and keeping it on the wall as they walk through. This method is not guaranteed to
find an exit: the robot could be going in circles around an “island” inside the maze.

Pledge algorithm. This is a modified version of wall following that’s able to jump between islands,
to solve mazes wall following can’t. It’s a guaranteed way to reach an exit on the outer edge of any
2D maze from any point in the middle. However, it is not guaranteed to visit every passage inside
the maze, so this algorithm will not help you if you are looking for a hidden treasure inside the maze.

Start by picking a direction, and always move in that direction when possible. When you hit a
wall, start wall following, using the left hand rule. When wall following, count the number of turns
you make, e.g. a left turn is -1 and a right turn is 1. Continue wall following until your chosen
direction is available again and the total number of turns you’ve made is 0; then stop following wall
and go in the chosen direction until you hit a wall. Repeat until you find an exit.

Note: if your chosen direction is available but the total number of turns is not zero (i.e. if you’ve
turned around 360 degrees or more), keep wall following until you untwist yourself. Note that Pledge
algorithm may make you visit a passage or the start more than once, although subsequent times will
always be with different turn totals.

The figure below illustrates this method

1

2

Thick black lines show the walls of the maze; the red line shows the path of the robot. At point
1, robot turns to so that it is again heading the same direction as in the beginning; however, the
number of turns at this point is not zero, so the robot continues following the wall. At point 2, the
robot is again heading in the original direction, and the number of turns is zero, so it stops following
the wall. Had the robot left the wall at point 1, it would be running in circles.

Trémaux’s algorithm. This maze solving method is designed to be able to be used by a human
inside of the maze. It will find a solution for any maze.

As you walk down a passage, draw a line behind you to mark your path. When you hit a dead
end, turn around and go back the way you came. When you encounter a junction you haven’t
visited before, pick a new passage at random. If you’re walking down a new passage and encounter
a junction you have visited before, treat it like a dead end and go back the way you came. (That
last step is the key which prevents you from going around in circles or missing passages in braid
Mazes.) If walking down a passage you have visited before (i.e. marked once) and you encounter
a junction, take any new passage if one is available, otherwise take an old passage (i.e. one you’ve

Maze algorithms 14

marked once). When you finally reach the exit, paths marked exactly once will indicate a direct way
back to the start. If the maze has no solution, you’ll find yourself back at the start with all passages
marked twice.

	Introduction
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5
	Further challenges: Pledge algorithm
	Mapping the maze
	Challenge for advanced students
	Maze algorithms

