
PROBLEM OF THE
MONTH

September, 2016

MATHEMATICS

5 points: 16 participants have signed up for the Sigma ping pong

tournament. How many ways are there to pair these 16 participants in the

first round?

Hint: Take an arbitrary participant and ask how many choices (s)he has for

a partner in the first round. After the first pair is chosen ask any of the

remaining participants the same question (or, note that after the first pair is

chosen the problem is reduced to choosing a pair out of two less (14)

participants)...

Answer: 𝟏𝟔!/(𝟐𝟖 ⋅ 𝟖!) = 𝟏𝟓!! = 𝟏𝟓 ⋅ 𝟏𝟑 ⋅ 𝟏𝟏 ⋅. . .⋅ 𝟏

Solution: (1) Follow hint. The first player has a choice of 15 partners. The

next one can choose any of 13 among the remaining players. Continuing

we get 𝟏𝟓 ⋅ 𝟏𝟑 ⋅ 𝟏𝟏 ⋅. . .⋅ 𝟏 possibilities to pair 16 participants.

(2) Let us order 16 participants and assume that the number 1 plays with

number 9, number 2 with number 10 etc. There are 16! ways to order

participants. The pairing will not change if we interchange 1 with 9 or 2 with

10 etc. We get 𝟏𝟔!/𝟐𝟖. In addition, we can simultaneously reorder first 8

and second 8 using the same permutation (the pairing will not change).

Therefore, the final answer is 16!/(28 ⋅ 8!).

(3) The most straightforward way is to ask yourself, how many possibilities

are there to choose 8 pairs out of 16 participants? Pair #1 can be selected

in 𝐶16
2 =

16!

2!14!
 ways, pair #2 in 𝐶14

2 =
14!

2!12!
 ways, and so on. The total number

of the possibilities is, 𝐶16
2 𝐶14

2 . . . 𝐶2
2 =

16!

28
. However, this counts all possible

permutations of the obtained 8 pairs as distinct pairings, while they are in

fact identical (it does not matter whether players A and B are pair #1, or

pair #5). Therefore, in order to obtain the number of pairings we divide the

obtained number of possibilities by 8!,
16!

288!
= 15 ⋅ 13 ⋅ 11. . .⋅ 3 ⋅ 1.

10 points: Prove that the product of any m subsequent integer numbers is

divisible by m!

Hint: You have to show that the number (𝑘 + 1)(𝑘 + 2). . . (𝑘 + 𝑚)/𝑚! is

integer. Can you assign any meaning to this number?

Solution: We have to show that the number (𝑘 + 1)(𝑘 + 2). . . (𝑘 + 𝑚)/𝑚! is

integer. Let us assume that k is non-negative. Then this number is (𝑘 +

𝑚)!/(𝑘! ⋅ 𝑚!)which is the number of ways to choose m objects from (k+m)

objects if the order of objects is not important. The number of ways is

always an integer number! Therefore, the statement is proven for k non-

negative. If −𝑚 ≤ 𝑘 < 0then one of the numbers we multiply is zero and the

result of multiplication is equal to zero and is divisible by m! Finally, if 𝑘 <

−𝑚 then

(𝑘 + 1)(𝑘 + 2). . . (𝑘 + 𝑚)/𝑚!

= (−1)𝑚(|𝑘| − 𝑚)(|𝑘| − 𝑚 + 1). . . (|𝑘| − 1)/𝑚!)

 = (−1)𝑚(|𝑘| − 1)!/((|𝑘| − 1 − 𝑚)! ⋅ 𝑚!)

The latter number up to a sign is the number of ways of choosing m objects

from |k|-1 objects and is integer as well. This completes the proof for all

integers.

 PHYSICS

5 points:

Two very massive walls are moving toward each other with identical

speeds V. A light box is initially resting on a frictionless surface between

the two walls as shown. Find the speed of the block after three elastic

collisions with the walls.

Hint: Consider a wall that moves towards the box at rest, with speed V.

From the point of view of the wall, the box is moving towards it with speed

V. After collision, the velocity of the box with respect to the wall simply

changes its sign. Now you can find the velocity of the box with respect to

the ground, and repeat this procedure for each collision.

Answer: 6V.

Solution: Consider a wall that moves towards the box at rest, with velocity

V. From the point of view of the wall, the box is moving with velocity -V..

After the collision, the velocity of the box with respect to the wall changes

its sign and becomes +V. With respect to the ground, its velocity is +2V.

Now, consider the second wall that moves towards the box with velocity -V.

From its point of view, The velocity of the box is +3V. After collision it

changes to -3V, or -4V with respect to the ground. In this way, the speed of

the box will increase by amount 2V after each collision. Therefore, after 3

collisions it will be 6V.

10 points:

A spring is hanging from the ceiling of an elevator. A technician hung a 1 kg

weight onto the spring, and after it reaches equilibrium, measured that the

spring stretched by 10 cm. The technician then pressed the 50th floor

button, and the elevator suddenly started moving up with the constant

acceleration of 1 m/s2 and continues to move with the same acceleration.

What will be the maximum additional stretching of the spring (assume

that all processes are completely elastic)?

Hint:

What is the new equilibrium position of the weight, and how is it positioned

with respect to this new equilibrium?

Answer: 2 cm.

Solution: In equilibrium, the spring stretches proportionally to the force

applied. Originally, the force was equal to mg (m=1kg, g=9.8 m/s2). When

the elevator starts moving with acceleration a=1m/s2 , the force increases

by amount ma. Therefore, the equilibrium potion will be shifted down by

length 𝛥𝑙 = (𝑎/𝑔) ⋅ 10𝑐𝑚 ≈ 1𝑐𝑚. However, the weight will not stop at that

pioint, but rather will start oscillating about it. The amplitude of such

oscillation is 1𝑐𝑚 (since its starts motion 1𝑐𝑚 above the new equilibrium

position). Therefore, the lowest point that the weight will reach is 1𝑐𝑚 below

the new equilibrium, ot 2𝑐𝑚 below the original one.

CHEMISTRY

5 points:

Once upon a time, in a small tavern in Port-Royal one old pirate John

Neusilber was telling a fascinating story of his recent enterprise, when he,

along with a small crew of his friends, managed to capture a huge Spanish

galleon. There they found several heavy chests full of golden coins. John

was boasting how brave his crew was, and how cowardly the crew of the

Spanish ship surrendered.

“Believe me, this story is absolutely real. I even have some coins with me,”

John said and pulled out a small sack with coins from his pocket.

“Something is very suspicious in this story,” another pirate, Prudentio, said.

“Why were there almost no guards on this ship, why did they surrender so

easily? I am not sure these coins are golden. Let’s ask Alberto.”

Alberto was a pirate too, but he started his career as an alchemist. After

many years of tireless attempts to convert lead to gold, he eventually

realized that to obtain gold from lead one has to load a lead bullet into

musket’s barrel and to find someone who has no loaded musket, but who

has a wallet loaded with golden coins. In other words, he left Europe, went

to Caribbean and became a pirate.

Alberto took one coin and looked at it. “Interesting” - he said. “Looks like

gold, but… Can I have one? I’ll tell for sure by tomorrow.”

After coming to his room, where he had a small alchemist laboratory

(apparently, he was still hoping he would be capable of inventing the

method of obtaining gold without bloodletting), Alberto took a bottle with

Spiritus of Niter (modern chemists call it “nitric acid”). Alberto initially

planned to prepare Aqua Regia (a mixture of nitric and hydrochloric acids),

but at the very last moment he decided to take Spiritus of Niter alone. He

poured it in a glass and dropped the coin there. To his surprise, a violent

reaction ensued, and the coin dissolved completely. The resulting solution

had a green-blue color. “A-ha, not gold,” - Alberto said, “Let’s see what else

is there besides Venus”. He poured the solution in a dish and started to

heat gently until the solution evaporated completely, leaving a crystalline

residue. He then dissolved this residue in water and added a concentrated

solution of table salt to it. A copious white precipitate formed immediately,

which was not soluble neither in Spiritus of Niter nor in Aqua Regia. ”Not

bad”, Alberto said, “not bad…”

Next evening Alberto announced his verdict to impatient pirates: “Prudentio

was right, the coins are not golden. That is why there were almost no

guards there. But I found something Spaniards themselves didn’t probably

know: these coins contain a lot of ………. “

What did Alberto mean under “Venus”, and why did he decide the coins are

not a complete junk?

Hint: The number of metals alchemists knew was equal to the number of

stellar bodies (the five planets, the Sun and the Moon). Check which of

those metals form insoluble chlorides.

Solution:

Most metals react with acids, and the products of this reaction are gaseous

hydrogen and salt. For example, iron reacts with hydrochloric acids:

Fe + HCl = FeCl2 + H2

However, some metals that are right of hydrogen in the activity series (you

can google what does the “activity series of metals” mean) do not react with

acids in this manner. Copper, silver, mercury, gold are right of hydrogen, so

Alberto did not expect the coin to react with hydrochloric acid. However,

silver and copper react with nitric acid, but no hydrogen is produced.

Instead, one molecule of acid oxidizes the metal (the byproducts are

nitrogen dioxide and water), and another makes a salt with the oxidized

metal, for example:

Ag + 2HNO3 = AgNO3 + H2O +NO2

In contrast, gold does not react even with nitric acid, and it reacts only with

aqua regia (a mixture of nitric and hydrochloric acids). That is why Alberto

was disappointed when he observed a violent reaction of the coin with nitric

acid: it became clear it was not gold.

The blue color of the liquid obtained was an indication that the coin

contained copper (“Venus” in alchemists jargon).

However, the question was if the coin contained only copper, or it was

something else there. To figure it out, Alberto got rid of the excess of acid

(by evaporating the solution obtained). He dissolved it in water and added

sodium chloride (table salt). We know that copper chloride (CuCl2) is soluble

in water, so there was no reason to expect an exchange reaction according

to this equation:

Cu(NO3)2 + 2NaCl = CuCl2 + 2NaNO3

However, silver chloride (AgCl) is not water soluble, so formation of the

precipitate is the indication of the presence of silver nitrate in the solution:

AgNO3 + NaCl = AgCl + NaNO3

Chlorides of iron, zinc, tin, copper are soluble, lead chloride is marginally

soluble. These metals, as well as silver, mercury and gold were the only

metals known to alchemists (including Alberto himself). The presence of

gold was already ruled out (the coin dissolved in nitric acid), mercury is

liquid and highly volatile, so it is usually not a component of alloys. That

means that the second metal in the coin is silver.

10 points:

Below are fragments from a textbook written in some extinct language. The

Cryptography department was capable of translating the text partially, but

some words, symbols, and formulas remained unclear, because the

cryptographer who did that work had almost zero knowledge of

Chemistry. Decipher the unclear parts of the text.

Seogulc is a white crystalline compound with a formula ♆⚻♇⚷⚸♈⚻ . It is

non-toxic, soluble in water, and has a sweet taste. Its formula can also be

written as (♆♇⚸♈)⚻ , and that is why Seogulc, as well as other

compounds of that type are called glewarhyd (a word composed of “glew”,

♆, and arhyd, ♇⚸♈).

…………

In free form, glew, or ♆, is a solid that burns in gaseous ♈⚸ to produce

♆♈⚸ (a gas) according to the equation:

♆ + ♈⚸ → ♆♈⚸

………….

♇⚸ is a gas. Its mixture with gaseous ♈⚸ burns violently to yield arhyd,

and the equation of this reaction is:

⚸♇⚸ + ♈⚸ → ⚸♇⚸♈

At room temperature, arhyd is a colorless transparent liquid. It reacts

violently with some active metals (calcium, sodium), and, in a presence of

gaseous ♈⚸ , causes corrosion of many other metals (e.g., iron, copper). It

is used as a solvent for many inorganic reactions.

Explain what “seogulc”, “arhyd”, and “glew” mean. Explain the meaning of

the symbols ♆, ♈ , ♇, ⚷, ⚸, and⚻.

Hint: Obviously, ⚷ is “1”. ♆, ♈ , ♇ denote very common elements (you

know them very well). Try to think, how many elements exist in a gaseous

form?

Solution:

Obviously, “seogulc” is glucose (C6H12O6). Its formula can be re-written as

(CH2O)6, hence the name “carbohydrate”, the common name for this class

of compounds. From that, it becomes clear that “glew” is carbon.

Also, by looking at the equation

♆ + ♈⚸ → ♆♈⚸

It becomes clear that valence of the element ♆ is multiple of the valence of

the element ♈ .

By looking at the equation

⚸♇⚸ + ♈⚸ → ⚸♇⚸♈

we conclude the valence of ♈ is multiple of the valence of ♇. In addition,

the elements ♇ and ♈ are gases with formulas ♈⚸ and ♇⚸ , it looks like ⚸

should be 2: firstly, no simple substances (elements) form stable tri- or

tetraatomic molecules, but many of them form diatomic molecules.

Secondly, if ⚸ is more than 2, e.g., if it is 3, then the valence of ♈ should

be 3, and the valence of ♆ should be 9, which is highly improbable.

Taking into account all these considerations, it is easy to conclude ♇ is

hydrogen, ♈ is oxygen, and ♆ is carbon.

Carbon burns in oxygen to produce carbon dioxide.

Hydrogen also burns in oxygen to produce hydrogen oxide (“arhyd”, or

water).

Water is a very good solvent for many chemical reactions, it reacts with

active metals and causes corrosion of many other metals.

BIOLOGY

5 points:

It is known that in all living organisms three nucleotides are used to encode

each amino acid. Does it mean that to encode the peptides with the total

length of N amino acids the DNA segment must be at least 3N nucleotides

long? Are there any exceptions to this rule, and if yes, what are the benefits

and disadvantages of that?

Answer:

The maximum total length of aa sequence coded by 1000 bp DNA is almost

2,000 aa.

This is because the same segment of DNA can potentially encode more

than one amino acid sequence. For example, let’s consider the sequence

TATCAGAATCAGTG

If reading starts with TAT, the sequence produces the peptide

TAT CAG AAT CAG TG (etc), or

Tyr Glu Asn Gln

But if we start with ‘A’, the same sequence produces:

(T) ATC AGA ATC AGT G (etc), or

 Ile Arg Ile Ser

If we shift the “reading frame” forward for one more nucleotide, we get

(TA) TCA GAA TCA GTG, which means the peptide sequence is:

 Ser Glu Ser Val

In all three cases the nucleotide sequence is the same, but it encodes for

three totally different peptide sequences.

Moreover, the opposite strand can also encode three different peptide

sequences exactly in the same way as described above. In other words, the

nucleotide sequence which is N nucleotides long can encode different

protein chains 2N amino acids (N in one strand plus N in the

complementary strand).

It is not exactly 2N, because at least one codon is a stop codon (it is a part

of the sequence, but no amino acid is incorporated), and several

nucleotides at the beginning of each gene are needed to initiate peptide

synthesis, although they encode no amino acids.

The above described situation takes place in real living organisms rarely,

because, as a rule, only one of two DNA strands encodes a protein

sequence, and there is just one “reading frame”, so usually a nucleotide

sequence with the length of N nucleotides produces a protein that is N/3

nucleotides long. However, in many viruses the genome is organized in

such a way that some segments contain up to 3 reading frames, and the

second DNA strand encodes a protein chain. That is needed to minimize

the size of the viral DNA, although these cases are rare.

10 points:

The gastric brooding frog (Rheobatrachus silus), extinct since 1981,

swallowed its eggs and then brooded about twenty tadpoles for 6-7 weeks

in its stomach. Ultimately, the mother "give birth" by burping up her froglets.

If the species evolved from a more conventional type of frog, as seems

likely, propose a possible mechanism that lead to the development of this

“method of birth" and identify at least three changes that would have had to

take place in order to make it possible.

Answer:

a) Most likely, in distant past the frogs ate some of their eggs. This type

behaviour is common among many species of fish and amphibia.

Accordingly, some protective mechanisms started to develop to protect

eggs from digestion. When some eggs that were swallowed started to

survive they got some advantage over other eggs, because they were better

protected in mother’s stomach. As a result, this strategy gradually became

predominant. In parallel, mother frog’s behaviour had also gradually

evolved: she learn to swallow as many eggs as possible rather than to

deposit them in the water as is now done by all other species of frogs. In

addition, the following physiological changes occurred in mother frog’s

organism.

b) The mother's stomach chemistry had to be radically altered during the

reproductive period so as not to kill the young with her digestive enzymes

and strong stomach acids.

c) Passage of the eggs from the stomach into the intestines had to be

suppressed.

d) The tadpoles had to be converted from a mobile, feeding organism into

one that could survive when imprisoned for weeks in a dark, crowded frog

stomach.

e) The burping event had to be programmed so as not to occur too early

nor too late in the tadpole development (either of which could have been

fatal).

COMPUTER SCIENCE

● You can write and compile your code here:

http://www.tutorialspoint.com/codingground.htm

● Your program should be written in Java or Python

● No GUI should be used in your program: eg., easygui in Python. All

problems in POM require only text input and output. GUI usage

complicates solution validation, for which we are also using

codingground site. Solutions with GUI will have points deducted or

won’t receive any points at all.

● Please make sure that the code compiles and runs on

http://www.tutorialspoint.com/codingground.htm before submitting it.

● Any input data specified in the problem should be supplied as user

input, not hard-coded into the text of the program.

● Submit the problem in a plain text file, such as .txt, .dat, etc, or as a

zip archive of such files.

No .pdf, .doc, .docx, etc!

Introduction: Multidimensional Arrays

(If you already know what single-dimensional and multidimensional arrays are, you are

welcome to skip straight to the problems below)

As you know, in computer languages, values representing quantities, IDs, text, and so

on, are stored in variables: a = 1, b = 3.14, c = “Hello World!”. If we want to store the

year’s precipitation by day in inches, it would be inconvenient to store the data in 365

variables: day0 = 0.0, day1 = 0.5… Instead, we use a one-dimensional array: We

allocate (meaning reserve) space for 365 variables in one long block of memory, and call

the block dailyPrecipitation. To access the variable for each day, we write

dailyPrecipitation[i], where i goes from 0 to 364. So to write or read the value for day

54, we write dailyPrecipitation[54], which means “look in the 54th block of the array”.

Behind the scenes, when the computer reads the expression dailyPrecipitation[54], it

goes to the beginning of this block of memory, then moves 54 blocks over, and reads the

value there. Be careful: although in most languages, the first block is numbered 0, there

are some (rare) exceptions where labeling starts at 1.

We can extend the notion of one-dimensional arrays to two dimensions. From the perspective of

writing code, it’s easy. Say, if you want to record the players’ positions on a checkerboard, and

denote each square as 0 → empty, 1→ black piece, 2→ red piece, then you create an 8x8 two

dimensional array of integers, call it, say, checkerboard. Now, to write or read the state

http://www.tutorialspoint.com/codingground.htm
http://www.tutorialspoint.com/codingground.htm

of square A8 (i.e. 1,8), we just write checkerboard[0][7]. Behind the scenes, things are

slightly more complicated than in one dimensional case: Computer memory is single-

dimensional, so it can only reserve 1-dimensional arrays. One way that a computer can

create the 8x8 2D array checkerboard[8][8], is to allocate 8*8 = 64 blocks, and then

map the 2D array onto these 64 blocks like this: checkerboard[n][m] = look in the (8*n

+ m) block from the beginning of checkerboard. Naturally, it is possible to make arrays

of any dimension this way.

Different languages have different syntax for arrays. Look up the array documentation for

the language of your choice to learn how to implement them in your code.

5 points:

If numbers 1 through 9 are placed in the 3x3 grid so that sums of numbers

in each row, column and two major diagonals are 15, they form a magic

square. An example of magic square is:

2 7 6

9 5 1

4 3 8

Write a program where you receive first 2 rows of a square from standard

input. Then your program needs to figure out whether third row can be

added so that a magic square is formed. If it's possible, you should output

the resulting magic square. If not possible, the program should state so.

Use two-dimensional array (see Introduction) in your solution.

Solution:
Java:
// fill last row of a magic square
// Java version

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class MagicSquare {
 private int[][] msquare;
 private int n; // number of rows/column in msquare
 private int mconstant; // the magic constant (the sum)

 public MagicSquare() {
 // for debugging

 //msquare = new int[][] {{2, 7, 6}, {9, 5, 1}, {0, 0, 0}};
 //n = 3;
 //mconstant = 15;
 }
 public void input() throws IOException {
 System.out.println("Enter the first row of a magic square separating the numbers with a

space:");
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 String[] numbers = br.readLine().trim().split("\\s+");

 n = numbers.length;
 msquare = new int[n][n];
 mconstant = 0;
 for(int j=0; j<n; j++) {
 msquare[0][j] = Integer.parseInt(numbers[j]);
 mconstant += msquare[0][j];
 }

 // input the rest rows except for the last one
 for(int i=1; i<n-1; i++) {
 System.out.printf("Enter the row number %d of a magic square separating the numbers with a

space:\n", i+1);
 numbers = br.readLine().trim().split("\\s+");
 for(int j=0; j<n; j++)
 msquare[i][j] = Integer.parseInt(numbers[j]);
 }
 }

 public void fillLastRow() {
 for(int col=0; col<n; col++) {
 msquare[n-1][col] = mconstant;
 for(int row=0; row<n-1; row++) {
 msquare[n-1][col] -= msquare[row][col];
 }
 }
 }

 /**
 * @param v
 * @return number of times v occurs in msquare[][]
 */
 public int findVal(int v) {
 int count = 0;
 for(int row=0; row<n; row++) {
 for(int col=0; col<n; col++) {
 if(msquare[row][col] == v)
 count++;
 }
 }
 return count;
 }

 public boolean verify() {
 for(int row=1; row<n; row++) { // skip the 1st row since we calculated mconstant from it
 int s = 0;
 for(int col=0; col<n; col++)
 s += msquare[row][col];
 if(s != mconstant)
 return false;
 }

 for(int col=0; col<n; col++) {
 int s = 0;
 for(int row=0; row<n; row++)
 s += msquare[row][col];
 if(s != mconstant)
 return false;
 }

 // main diagonal
 int s = 0;
 for(int row=0; row<n; row++)
 s += msquare[row][row];
 if(s != mconstant)
 return false;

 // secondary diagonal
 s = 0;
 for(int row=0; row<n; row++)
 s += msquare[n-row-1][row];
 if(s != mconstant)
 return false;

 // uniqueness
 for(int row=0; row<n; row++) {
 for(int col=0; col<n; col++) {
 if(findVal(msquare[row][col]) > 1)
 return false; // duplicate value
 }
 }
 return true;
 }

 public void output() {
 for(int row=0; row<n; row++) {
 for(int col=0; col<n; col++) {
 if(col != 0)
 System.out.print(", ");
 System.out.print(msquare[row][col]);
 }
 System.out.println();
 }
 }

 public static void main(String[] args) throws IOException {
 MagicSquare ms = new MagicSquare();
 ms.input();
 ms.fillLastRow();
 if(ms.verify())
 System.out.println("matrix is valid");
 else
 System.out.println("matrix is invalid");
 ms.output();
 System.out.println("end.");
 }
}

Python:
#!/usr/bin/python3

fill last row of a magic square
note: using numpy is totally acceptable but in this solution we'll use basic python
solution for arbitrary N - square size

from __future__ import print_function
import sys

class MagicSquare:
 msquare = [] # magic square - will become a 2D array which is a list of lists in python
 n = 0 # number of rows/column in msquare
 mconstant = 0 # the magic constant (the sum)

 # for debugging
 #msquare = [[2, 7, 6], [9, 5, 1], [0, 0, 0]]
 #n = 3
 #mconstant = 15

 def input(self):
 print("Enter the first row of a magic square separating the numbers with a space:")
 line = sys.stdin.readline().strip()
 numbers = [int(x) for x in line.split()]
 self.n = len(numbers)
 self.mconstant = sum(numbers)
 self.msquare = [[0 for x in range(self.n)] for x in range(self.n)] # allocate 2D array
 self.msquare[0] = numbers # assign the 1st row
 # input the rest rows except for the last one
 for i in range(1,self.n-1):
 print("Enter the row number {} of a magic square separating the numbers with a

space:".format(i+1))
 line = sys.stdin.readline().strip()
 self.msquare[i] = [int(x) for x in line.split()]
 pass

 def fill_last_row(self):
 for column in range(self.n):
 self.msquare[self.n-1][column] = self.mconstant - sum([row[column] for row in self.msquare])
 pass

 def verify(self):
 for row in range(1,self.n): # skip the 1st row since we calculated mconstant from it
 s = sum(self.msquare[row])
 if s!= self.mconstant:
 return False
 pass

 for column in range(self.n):
 s = sum([row[column] for row in self.msquare])
 if s!= self.mconstant:
 return False
 pass

 # main diagonal
 s = 0
 for i in range(self.n):
 s += self.msquare[i][i]
 if s!= self.mconstant:
 return False

 # secondary diagonal
 s = 0
 for i in range(self.n):
 s += self.msquare[self.n-i-1][i]
 if s!= self.mconstant:
 return False

 # uniqueness
 s = set()
 for i in range(self.n):
 for j in range(self.n):
 if self.msquare[i][j] in s:
 return False # duplicate value
 else:
 s.add(self.msquare[i][j])

 return True

 def output(self):
 print(*self.msquare, sep='\n')

if __name__ == "__main__":
 ms = MagicSquare()
 ms.input()
 ms.fill_last_row()
 if ms.verify():
 print("matrix is valid")
 else:
 print("matrix is invalid")
 ms.output()
 print("end.")

10 points:

Problem:

Your program receives from standard input an “image” of an arbitrary

shape cut from an NxN square of quad-ruled paper (cutout follows grid

lines). First the dimension N of the square is given. Then N lines of text are

provided, where "-" is standing for "cutout", and “x” is standing for the

shape. For example:

(0,0) (5,0)

-x----

-xxx--

-xxx--

-xxx--

---x--

(0,5) (5,5)

(Note: coordinates are provided here for clarity, they are not included in the

input).

Your program should:

1. Find the center of mass of the shape. For the purpose of the

calculation of the center of mass, presume that each little square “x”

of the shape has the same mass. In the example above the center of

mass is at (2, 2).

Note: it is possible for the center of mass to be located between the

coordinate lines. For example, the following shape

 -xx-

 -xx-

has a center of mass located at (1.5, 1.5). Your program should take

this into consideration.

2. Determine if the shape is contiguous (i.e. one piece). For the shape

to be contiguous its constituent little squares should touch each other

horizontally, vertically or diagonally. For example, the following

shape:

 -x--

 --x-

is contiguous, but this one:

 -x--

 -xx-

is not.

Solution:

Java:
// find center of mass and determine continuity
// Java 5 version

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.LinkedList;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class MassCenterJ {
 class Coordinate<T> {
 public Coordinate(T x, T y) {
 this.x = x;
 this.y = y;
 }

 T x, y;
 }

 private int n; // number of rows/column in figure
 private int[][] figure; // we'll map 'x' and '-' -> 1 and 0

 public MassCenterJ() {
 // for debugging
 //n = 4;
 //figure = new int[][] {{0,0,0,0}, {0,1,0,0}, {0,0,0,0}, {0,1,1,0}};
 }

 public void input() throws IOException {
 System.out.println("Enter number of rows/columns:");
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 n = Integer.parseInt(br.readLine().trim());

 figure = new int[n][n];
 Pattern p = Pattern.compile("^[\\-xX]+$");
 for(int i=0; i<n; i++) {
 System.out.printf("Enter the row number %d:\n", i+1);
 String line = br.readLine().trim();
 Matcher m = p.matcher(line);
 if(!m.find()) {
 System.out.println("invalid input; try again");
 i--;
 }
 else {
 if(line.length() != n) {
 System.out.println("invalid input; try again");
 i--;
 }

 else {
 for(int j=0; j<n; j++)
 figure[i][j] = line.charAt(j) == '-' ? 0 : 1;
 }
 }
 }
 }

 public void output() {
 for(int row=0; row<n; row++) {
 for(int col=0; col<n; col++) {
 if(col != 0)
 System.out.print(", ");
 System.out.print(figure[row][col]);
 }
 System.out.println();
 }
 }

 public Coordinate<Double> findCenterMass() {
 Coordinate<Double> c = new Coordinate<Double>(0.0, 0.0);
 int count = 0;
 for(int i=0; i<n; i++) {
 for(int j=0; j<n; j++) {
 if(figure[i][j] > 0) {
 c.x += j;
 c.y += i;
 count++;
 }
 }
 }
 c.x /= count;
 c.y /= count;
 return c;
 }

 public int getSum() {
 int sum = 0;
 for(int row=0; row<n; row++) {
 for(int col=0; col<n; col++) {
 sum += figure[row][col];
 }
 }
 return sum;
 }

 public boolean isContiguous() {
 int i=0, j=0;
 find_first:
 for(i=0; i<n; i++) {
 for(j=0; j<n; j++) {
 if(figure[i][j] > 0)
 break find_first;
 }
 }
 List<Coordinate<Integer>> todo = new LinkedList<Coordinate<Integer>>();
 todo.add(new Coordinate<Integer>(i, j));
 while(todo.size() > 0) {
 Coordinate<Integer> c = todo.remove(0);
 i = c.x;

 j = c.y;
 figure[i][j] = 0;
 if(j+1<n && figure[i][j+1]>0) {
 todo.add(new Coordinate<Integer>(i,j+1));
 figure[i][j+1] = 0;
 }
 if(j-1>=0 && i+1<n && figure[i+1][j-1]>0) {
 todo.add(new Coordinate<Integer>(i+1,j-1));
 figure[i+1][j-1] = 0;
 }
 if(i+1<n && figure[i+1][j]>0) {
 todo.add(new Coordinate<Integer>(i+1,j));
 figure[i+1][j] = 0;
 }
 if(j+1<n && i+1<n && figure[i+1][j+1]>0) {
 todo.add(new Coordinate<Integer>(i+1,j+1));
 figure[i+1][j+1] = 0;
 }
 }
 // we zeroed all contiguous elements, so...
 int sum = getSum();
 if(sum > 0)
 return false;
 return true;
 }

 public static void main(String[] args) throws IOException {
 MassCenterJ mc = new MassCenterJ();
 mc.input();
 mc.output();
 Coordinate<Double> c = mc.findCenterMass();
 System.out.printf("Cx=%.2f, Cy=%.2f\n", c.x, c.y);
 if(mc.isContiguous())
 System.out.println("contiguous");
 else
 System.out.println("not contiguous");
 System.out.println("end.");
 }
}

Python:
#!/usr/bin/python3

find center of mass and determine continuity

from __future__ import print_function
import sys
import re

class MassCenter:
 n = 0 # number of rows/column in figure
 figure = [] # this will become a 2D array which is a list of lists in python
 # we'll map 'x' and '-' -> 1 and 0

 # for debugging
 #n = 6
 #figure = [[0,1,0,0,0,0], [0,1,1,1,0,0], [0,1,1,1,0,0], [0,1,1,1,0,0], [0,0,0,1,0,0],

[0,0,0,0,0,0]]

 #figure = [[0,1,0,0,0,0], [0,1,0,0,0,0], [0,0,1,0,0,0], [0,1,1,0,0,0], [0,0,1,1,1,0],

[0,0,1,1,1,0]]
 #n = 4
 #figure = [[0,0,0,0], [0,1,1,0], [0,1,1,0], [0,0,0,0]]
 #figure = [[0,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,0]]
 #figure = [[0,0,0,0], [0,1,0,0], [0,0,0,0], [0,1,1,0]]

 def input(self):
 print("Enter number of rows/columns:")
 self.n = int(sys.stdin.readline().strip())
 self.figure = [[0 for x in range(self.n)] for x in range(self.n)] # allocate 2D array

 for i in range(self.n):
 print("Enter the row number {}:".format(i+1))
 line = sys.stdin.readline().strip()
 matched = re.match("^[\-xX]+$", line)
 if matched:
 letters = list(line)
 if len(letters) != self.n:
 raise Exception("invalid input")
 self.figure[i] = [0 if x=='-' else 1 for x in letters]
 else:
 raise Exception("invalid input")
 pass

 def output(self):
 print(*self.figure, sep='\n')

 def find_center_mass(self):
 count = 0
 Cx = 0
 Cy = 0
 for i in range(self.n):
 for j in range(self.n):
 if self.figure[i][j]:
 Cx += j
 Cy += i
 count += 1
 Cx /= count
 Cy /= count
 return Cx, Cy

 def find_first(self):
 for i in range(self.n):
 for j in range(self.n):
 if self.figure[i][j]:
 return i,j
 return 0,0

 def is_contiguous(self):
 i, j = self.find_first()
 todo = [(i,j)]
 while len(todo) > 0:
 i,j = todo.pop(0)
 self.figure[i][j] = 0
 if j+1 < self.n and self.figure[i][j+1]:
 todo.append((i,j+1))
 self.figure[i][j+1] = 0
 if j-1 >= 0 and i+1 < self.n and self.figure[i+1][j-1]:

 todo.append((i+1,j-1))
 self.figure[i+1][j-1] = 0
 if i+1 < self.n and self.figure[i+1][j]:
 todo.append((i+1,j))
 self.figure[i+1][j] = 0
 if j+1 < self.n and i+1 < self.n and self.figure[i+1][j+1]:
 todo.append((i+1,j+1))
 self.figure[i+1][j+1] = 0
 s = sum(sum(self.figure,[]))
 if s:
 return False
 return True

if __name__ == "__main__":
 mc = MassCenter()
 mc.input()
 mc.output()
 Cx, Cy = mc.find_center_mass()
 print("Cx=%.2f, Cy=%.2f" % (Cx, Cy))
 if mc.is_contiguous():
 print("contiguous")
 else:
 print("not contiguous")
 print("end.")

