Are All Infinities the Same?

Sofya Raskhodnikova Boston University

Are there more

integers or rational numbers?

1, 25, -170, ... 1/3, 371/11,....

• computer programs or computational problems?

How do we compare infinite sets?

How Do We Compare Sets?

• Question: Are there more students or brooms?

• Answer: The same number.

Find a bijection.

How Do We Compare Sets?

• Question: Are there more students or brooms?

When we count, we find a bijection between items and natural numbers (1, 2, 3, 4, ...).

To show that infinite sets have the same number of items, we also find a bijection.

Sets of Numbers

- Natural numbers (numbers used for counting)
 1, 2, 3, 4, 5, ...
- Positive even numbers (natural numbers divisible by 2)

2, 4, 6, 8, ...

• Integers

..., -3, -2, -1, 0, 1, 2, 3, ...

• Rational numbers (fractions)

$$0, 1, -1, \frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}, \dots$$

Reals (all numbers on the number line)
 1.414213562373095..., 3.14159265359...

Are There More Natural or Positive Even Numbers?

Are There More Natural or Even Numbers?

Are There More Natural Numbers or Integers?

Are There More Natural Numbers or Integers?

Natural numbers

Integers

Are There More Natural Numbers or Points with Integer Coordinates on the Plane?

Are There More Natural or Rational Numbers?

Countable Sets

- Sets that have finite number of items or the same number of items as natural numbers are called countable.
- The sets of positive even numbers,

integers, points on the plane with integer coordinates, rational numbers

are countable.

Creator of Set Theory

Georg Cantor 1845--1918

Is the Set of Real Numbers Countable?

The Set of Reals Between 0 and 1 is not Countable

- Suppose it is countable.
- Then there is a bijection...

 Natural numbers
 Reals between 0 and 1

 $1 \leftarrow \cdots > 0.2454452170...$
 $2 \leftarrow \cdots > 0.4721115037...$
 $3 \leftarrow \cdots > 0.2014120415...$
 $4 \leftarrow \cdots > 0.1234567890...$
 $5 \leftarrow \cdots > 0.0313131333...$

It can't be a bijection!

There are more reals than natural numbers!

Are the following sets countable?

- The set of names of students in this class.
- The set of squares: 1,4,9,16,25,...
- The set of powers of two: 1,2,8,16,32,64,...
- The set of points (x, y, z) with integer coordinates.
- The set of polynomials with integer coefficients.
- The set of sets of integers.
- The set of sets of real numbers.

Are there more programs or problems?

Is the Set of Computer Programs Countable?

Is the Set of Computer Programs Countable?

Yes, we can list them all:

- First, all programs of length 1.
- Second, all programs of length 2.
- Then, all programs of length 3.
- And so on...

public class TepClientSample public static yold Main() byte[] data = new byte(1024); string input, wisinghout TopClient server; server = new TopClient(* . . . *, part); Console.WriteLine("Unable to connect to server") tryl }catch (SocketException)(NetworkStream ns = server.GetStream(); int recv = ns,Read(data, 0, data,Length); ASCII.GetString(data, 0, recv); stringData = Encoding. Console, WriteLine (stringData); input = Console.ReadLine(); if (input se "exit") break; newchild Properties Fourt Add while (true) { NUCLELING DEPARTMENT*//

What is a Computational Problem?

- It has an input and an output.
- The simplest problems correspond to YES/NO questions about natural numbers.

Examples:

- Input: a natural number
- Question: is it odd?
- Answer: YES/NO

Other questions: Is it prime? Is it a power of 2?...

YES/NO Problems About Natural Numbers

For each such problem, we can write correct answers on inputs 1 2 3 4 5 6 7 ...

• Question: is it odd?

YES NO YES NO YES NO YES...

• Question: Is it prime?

NO YES YES NO YES NO YES...

• Is it a power of 2?

YES YES NO YES NO NO NO...

How Many Problems Are There?

Suppose there is a bijection with natural numbers

Problems (with correct answers)Natural numbers123456...1 \longrightarrow YES YES NO YES NO NO ...2 \longrightarrow NO NO YES NO YES NO ...3 \longrightarrow YES NO YES NO YES NO ...3 \longrightarrow YES NO YES NO YES NO ...3 \longrightarrow YES YES YES YES YES NO YES NO ...4 \longrightarrow YES YES YES YES NO YES NO ...5 \longrightarrow NO NO NO YES NO NO ...5 \longrightarrow NO NO NO YES NO NO ...

We can find a problem which is different from every problem on the list: NO YES NO NO YES ...

[It can't be a bijection!

There are more computational problems than programs!

Not all problems can be solved by computers.

Given

- the source code for a program, <*P*>
- an input string *s* for *P*

decide whether *P* halts on *s*.

There is no program that solves this problem!

Proof : the Halting problem is undecidable

Suppose for the sake of contradiction that program *H* decides the Halting problem:

```
On input (<P>, s),
```

$H \text{ outputs} \begin{cases}$ **YES**if P halts on s.**NO** $\text{ if it does not.} \end{cases}$

Proof : the Halting problem is undecidable

We write a new program G that uses H as subroutine.

- G=``On input <P>,
- 1. Run H on input (<P>,<P>).
- 2. If H outputs NO, halt; else enter an infinite loop."

What does G do on input <G>?

Proof : the Halting problem is undecidable

We write a new program G that uses H as subroutine.

- G=``On input <P>,
- 1. Run H on input (<P>,<P>).
- 2. If H outputs NO, halt; else enter an infinite loop."

If H says that G halts on <G>, then G loops on <G>. If H says that G loops on <G>, then G halts on <G>.

A contradiction!

A movie about undecidibility of Halting Problem

Proof That Computers Can't Do Everything (The Halting Problem)

https://www.youtube.com/watch?v=92WHN-pAFCs

- There are different kinds of infinity.
 There are more real numbers than natural numbers.
- 3. There are more computational problems than programs.
- 4. Some really useful problems, like the Halting problem, can't be solved by computer program.