

MATHEMATICS

5 points:
One day the Little Red Riding Hood decided to take some pies to her grandmother’s house.

Shortly after leaving her house, however, she realized she was really hungry and ate the three

largest pies, and as a result the total weight of the pies decreased by 35%. A little bit later in her

journey, she once again wanted a snack and ate the three smallest pies, as a result of which the

pies’ total weight decreased by another 5/13 compared to the previous weight. How many pies

did the Little Red Riding Hood leave her house with?

Answer: 10

Solution:
The three largest pies weigh 35% of the combined weight, or 7/20, leaving 13/20. Later on, the

Little Red Riding Hood ate 5/13 of the remaining 13/20 of the pies. 5/13 out of 13/20 is 5/20, or

25%.

So we have that the three largest pies weighed 35% of the total (11.67% average weight) and

the three smallest weighed 25% of the total (8.33% average weight). The remaining pies must

then add up to 40% of the total weight and their average weight must be between 8.33% and

11.56% of the total. The only possibility then is that there are 4 pies remaining, so the number of

pies the Little Red Riding Hood left her grandmother’s house with is 3+3+4 = 10.

10 points:
The line 𝑙 intersects the segment 𝐴𝐵 at point 𝐷 so that 𝐴𝐷 = 𝑎 and 𝐵𝐷 = 𝑏. Construct a circle that

goes through points 𝐴 and 𝐵 and carves out the smallest possible segment from line 𝑙. What is

the length of this segment in terms of 𝑎 and 𝑏?

Hint: use the chord theorem

Answer: 2√𝑎𝑏

PROBLEM OF THE
MONTH January, 2020

Solution: The point 𝐷divides the carved out segment into two segments. Let us denote the

lengths of these segments 𝑐 and 𝑑. By the chord theorem 𝑐𝑑 = 𝑎𝑏. Our goal is to minimize 𝑐 + 𝑑

given their product or, equivalently, minimize the arithmetic mean of 𝑐 and 𝑑 if their geometric

mean is given. It is well known (and easy to prove) that this happens when 𝑐 = 𝑑 = √𝑎𝑏.

Therefore, the minimal length of the segment is 2√𝑎𝑏. Remarkably, it does not depend on the

angle at which 𝑙 intersects 𝐴𝐵. To construct the circle we notice that the point 𝐷divides the

carved out segment into two equal segments. We draw the perpendicular to 𝑙 from the point 𝐷

and the perpendicular bisector to 𝐴𝐵. The center of the circle is at the intersection of these

constructed lines.

 PHYSICS

5 points: Imagine that you don’t have a freezer. There is an easy trick that would allow you to

achieve a rather low temperature: mix salt and ice. As salt causes the ice to melt, the temperature

of the mixture drops. This way, the melting temperature of ice can be brought down to as low as

𝑇1 = −210𝐶. What fraction of ice will be melted when that temperature is achieved if you started

with ice at its regular melting point, 𝑇0 = 00𝐶? Assume the system to be thermally isolated.

Specific heat capacities of liquid water and ice are 𝐶𝑤 = 4.2
𝑘𝐽

𝑘𝑔⋅0𝐶
 and 𝐶𝑖 = 2.1

𝑘𝐽

𝑘𝑔⋅0𝐶
,

respectively. Neglect heat capacity of salt. Latent heat of ice melting is L=334 kJ/kg.

Hint: Note that the latent heat of molten ice would be provided by cooling both remaining ice and

salty water to a lower temperature.

Answer: approximately 15%.

Solution: Let 𝑀 be the original mass of ice, and 𝑥 ⋅ 𝑀 the mass that has melted. The

amount of heat needed for the melting is 𝑥𝑀𝐿, and use of this heat result in cooling of both ice

and water from 𝑇0 = 00𝐶 to 𝑇1 = −210𝐶:

𝑥𝑀𝐿 = (𝐶𝑤𝑥𝑀 + 𝐶𝑖(1 − 𝑥)𝑀)(𝑇0 − 𝑇1)

334𝑥 = 21 ⋅ (4.2𝑥 + 2.1(1 − 𝑥))

By solving this equation, we obtain x=0.15, or approximately 15%.

10 points: Commercial heat pads are based on the solution of sodium acetate. Combined with

water, this salt may form a crystal with a melting temperature close to 𝑇𝑚 = 58𝑜𝐶. This crystal will

not typically form spontaneously when the solution is cooled down starting from higher

temperatures. In other words, the liquid would remain “supercooled” below the melting point. The

crystallization can be triggered by local mechanical stress, leading to heating up of the solution.

Assume that the heat pad of certain mass M is placed into a thermally isolated container that

contains the same mass of water, at temperature 𝑇0 = 20𝐶. What will be the final temperature

inside that container, once the crystallization is triggered? Specific heat capacities of water and

the sodium acetate solution are 𝐶𝑤 = 4.2
𝑘𝐽

𝑘𝑔⋅0𝐶
 and 𝐶𝑠 = 3

𝑘𝐽

𝑘𝑔⋅0𝐶
, respectively. Ignore the mass

and heat capacity of all the parts of the head pad except for the sodium acetate solution itself. The

composition of the solution is such that it can crystallize completely at 𝑇𝑚, the latent heat of its

crystallization is L=270 kJ/kg.

Hint: First, assume that all of the sodium acetate gets crystallized, and find how much heat this

gives out. This determines the change in Temperature. Once you’ve done that, change if your

assumption is correct (is the temperature that you found below or above the melting point?)

Answer: 𝑇 = 57.5 𝑜𝐶

Solution: Let M be the mass of the sodium acetate in the heat pack (the mass of water is the

same). If we assume that all of it is crystallized, that would produce extra heat 𝐿𝑀. This heat would

change the temperature of both water and sodium acetate by amount

𝛥𝑇 =
𝐿𝑀

𝑀(𝐶𝑠 + 𝐶𝑤)
= 𝐿/(𝐶𝑠 + 𝐶𝑤) = 37.5 𝑜𝐶

The resulting temperature is (37.5+2) 𝑜𝐶 = 57.5 𝑜𝐶. Since this is slightly below the equilibrium

melting point, the sodium acetate has indeed completely crystalized (as assumed).

CHEMISTRY

5 points:
One of Sigma workshops is “Fruit electricity”. By using two different metals, electricity is

produced from lemons, apples or other juicy fruits. For the first time, a copper wire and iron nails

(galvanized common nails obtained from the Home Depot) were used, and the voltage obtained

from the single fruit cell was approximately 1V. For the second time, a copper and X-acto knife

blades were used, and it produced about 0.7V. How can you explain this significant difference?

Hint:
A key word here is “galvanized”. What exactly does it mean: “galvanized nails”? Read about

that, and that will give an answer.

Solution:
In a bulk metal, atoms lose their outer electrons, which are freely travelling across the whole piece

of metal. The atoms become positively charged, and they stay in the nodes of metal’s crystal lattice

which is stabilized by the “electron gas” formed by travelling electrons. When a piece of metal

contacts water or an aqueous solution, a very tiny fraction of metal atoms dissolves, however, only

positive metal ions dissolve, whereas the electrons stay in the metal. As a result, a piece becomes

negatively charged, so dissolved ions cannot travel too far, they are attracted to the metal piece

by electrostatic forces. As a result, a piece of metal becomes covered by a positive “ion coat”,

whereas a metal itself becomes negatively charged.

Electropositive metals, e.g. zinc, lose electrons easily, their ions are easy to form, and a relatively

big number of ions go into a solution. Zinc’s “ion coat” is thick, and the voltage between the ionic

layer and the piece of zinc metal is high. Copper donates electrons more reluctantly, its “ion coat”

is thin, and its positive charge is small, and the negative charge of a piece of copper is small. Iron

is less electropositive than zinc, but more electropositive than copper. Now imagine both copper

and zinc are placed in the same solution of some weak acid (an acid is needed just to make water

more conductive). What happens? Ion coats of both pieces are now connected by a electric

conductor (an acidic water), so their electric potentials become equal. However, we know that

voltages between zinc ion coat and zinc metal, and between copper ion coat and copper metal are

different. Taking into account that both ion coats are electrically connected, we will observe that

the pieces of zinc and copper have different electric potentials, and if we connect them together,

electric current will flow from the electron rich piece of metal (zinc) to the electron deficient piece

of metal (copper). Since zinc loses electric charge, the ions from its ion coat escape, and new ions

dissolve to compensate for the loss of ions in the ion coat. That produces more electrons that flow

to the piece of copper, and this process will last until the whole piece of zinc dissolves.

Clearly, the nail coated with zinc behaves like zinc, and, when connected to copper, they produce

higher voltage than less electronegative iron.

In addition, x-acto knife blades are not a pure iron, they contain carbon. However, this carbon

forms tiny crystals of “cementite” (a compound formed by four atoms of iron and one atom of

carbon). Cementite is very hard, but it is fragile, so a real steel contains less than 4:1 ration (by

mole) of iron and carbon. Small grains of cementite are surrounded by iron. That makes steel

elastic (due to iron) and hard (due to cementite). However, for us that is not important, because

from the chemistry’s point of view, steel and iron are essentially the same.

To summarize, a copper-and-galvanized-nail couple produces higher voltage because it is actually

a Cu-Zn couple, whereas a copper-X-acto-blade is a Cu-Fe couple.

10 points:
A coin made from a copper-silver alloy with unknown silver content weighs 1 gram. To this coin,

an excess of nitric acid was added, and when the reaction had ceased (all solids “dissolved”),

the clear and transparent liquid obtained was evaporated to dryness. The solid remainder was

dissolved in 100 ml of water, and 10 grams (excess) of sodium sulfide was added. The

precipitate formed was filtered and completely dried. The mass of the residue was 1.38 grams.

What is the percentage of silver in the alloy?

Hint:
Both copper and silver form insoluble sulfides, CuO and Ag2O, respectively. Percentage of

sulfur, by mass, is different in them.

Solution:
Both copper and silver react with nitric acid, and the products are copper and silver nitrates,

accordingly. They are soluble and non-volatile, so they can be obtained in a free form when a nitric

acid evaporates.

When copper nitrate or silver nitrate react with sodium sulfide, they both form insoluble sulfides.

Cu(NO3)2 + Na2S → CuS + 2 NaNO3

2 AgNO3 + Na2S→ Ag2S + 2 NaNO3

Now we have to calculate the amount of sulfides (by mass) produced from 1 gram of each metal.

Atomic weights of Cu, S, and Ag are 64, 32, and 108, accordingly, and silver sulfide contains just

½ of sulfur atom per one silver atom. That means 0.64 g of copper yields 0.96 g of sulfide, and 1

g of copper yields 0.96/0.64= 1.5 g of sulfide. Accordingly, 1.08 g of silver yields 1.24 g of sulfide,

and 1 g of silver yields 1.15 g of sulfide.

Our coin yielded 1.38 g of a mixture of copper and silver sulfides, and this information allows us to

calculate the silver content (by mass). If we denote it as x, the rest, or 1-x, is copper. That allows

us to draw an equation:

1.15x + 1.5(1-x)=1.38

It is easy to solve it (this is a Chemistry problem, not Math, so I skip that step), and we get,

approximately, 0.34, which means the coin contains around 66% of copper and 34% of silver.

BIOLOGY

5 points:

Why do birds and mammals maintain a constant temperature? A small bird consumes

substantially more food than a cold-blooded lizard of the same weight, which warms in the

sun during the day and cools again at night.

Answer:

1) Birds and mammals can be active at night and during cold weather -- they can

explore environmental niches from which reptiles are barred.

2) Numerous temperature-sensitive metabolic reactions can be better coordinated if

they operate in a relatively uniform temperature range.

3) High temperature, besides increasing the rate of chemical reactions, allows faster

diffusion. Heat speeds up the diffusion of chemical transmitters in nerves and

facilitates faster behavioural reactions. It has also been suggested that

maintaining a constant high temperature in the brain promotes memory and

learning.

10 points:
Viruses do not only parasitize cells causing their death, but also facilitate horizontal gene

transfer between organisms and may even define biogeochemical cycles. Imagine that all the

viruses on Earth disappeared at once. What environmental (short-term) and evolutionary (long-

term) consequences will this lead to?

Answer:
The virus is a small infectious agent that replicates only inside the living cells of an organism.

Viruses can infect all types of life forms, from animals and plants to microorganisms, including

bacteria and archaea. The viruses are the most abundant and diverse species on Earth. Every

species has its own viruses controlling its population. Therefore, viruses are important for

determining the size of the majority of populations of living species, and are the major factor in

the ecological balance. The bacterial and microbial biomass of the oceans is controlled by the

viruses that infect these marine species. The marine bacterial biomass, in turn, is critical for the

amount of food available for the marine life, as well as for the exchange of oxygen, nitrogen,

carbon, etc. in the atmosphere. By lysing (killing) the bacteria, viruses release the carbon and

nitrogen into the ocean and the atmosphere, thereby controlling the atmospheric composition

and temperature.

The viruses are, by design, able to take up genes from one organism and transfer them to the

other organism. As such, the viruses appear to be the major driving force in evolution, enriching

the genomes of higher organisms via the so called "horizontal gene transfer". As was discovered

recently, the evolution happens primarily not via the point mutations of individual nucleotides in

DNA, but rather by the organisms acquiring the whole new genes and the corresponding new

functions due to the gene transfer from other species by the viruses. The examples include

evolution of the novel lineages of key photosynthetic genes in marine microorganisms. Another

example is the human (and other mammals) gene that is responsible for the attachment of the

fetus to the mother's placenta. This protein called Hemo is produced by the fetus, and it comes

from the viral gene acquired by our ancestors about 100 millions years ago. There are many

other genes of viral origin that constitute up to 8% of our genome with yet unknown functions.

Therefore, if all viruses were to disappear at once, we would find the world very different from

what it is now both immediately (short term), as well as in its ability to evolve (long term). The

suppression of some species by the viruses over the other ones will immediately affect the

balance between the population of different species, leading to the extinction of some of them,

and the dominance of the other ones. The balance in the ecosystem will be disturbed, most likely

leading to ecological collapse. Also, the exchange of nutrients and major chemical elements

through the ocean would change, leading to the major change in the atmospheric composition

and the climate shift. In the long term, we would find that the disappearance of the viruses leads

to the major slowing down of all evolutionary processes.

COMPUTER SCIENCE

● You can write and compile your code here:

http://www.tutorialspoint.com/codingground.htm

● Your program should be written in Java or Python

● No GUI should be used in your program: eg., easygui in Python. All

problems in POM require only text input and output. GUI usage

complicates solution validation, for which we are also using

codingground site. Solutions with GUI will have points deducted or

won’t receive any points at all.

● Please make sure that the code compiles and runs on

http://www.tutorialspoint.com/codingground.htm before submitting it.

● Any input data specified in the problem should be supplied as user

input, not hard-coded into the text of the program.

● Submit the problem in a plain text file, such as .txt, .dat, etc.

No .pdf, .doc, .docx, etc!

The Game of Hungry Sigma-Fish
You are given a rectangular field throughout which a number of hungry Sigma-fish is spread out.

Each fish is denoted by an integer representing its size. Empty fields are represented by a

period "." Here is an example of a simple field:

..4....3

.....2..

.2......

.......1

Each move goes like that: each Sigma-fish [simultaneously] moves one field (vertically,

horizontally or diagonally) towards another Sigma-fish of smaller size (if any). The direction is

chosen toward the closest smaller fish, with the following tie-breakers:

- larger target has a priority

- in case of equal size targets or alternative fields to move, the priority is directional, in the

following order of decreasing priority: N, NE, E, SE, S, SW, W, NW.

At the end of each move, if two or more fish end up on the same field, they merge into a fish

with the combined size (sum of their previous sizes).

http://www.tutorialspoint.com/codingground.htm
http://www.tutorialspoint.com/codingground.htm
http://www.tutorialspoint.com/codingground.htm

5 points:
For this problem the game field is a square NxN.

Write a program that will receive on the input:

- size N of the field (optionally)

- field composition, which consists of periods and integers

Your program should determine whether each of the integers 1..N is found in the set of

coordinates of the fish on the board and print YES or NO correspondingly. In case of NO, as a

bonus, please print which integers are missing.

Note: coordinates start with 1, thus the coordinates of the top left field of the board is (1, 1), and

the coordinates of the bottom right field of the board is (N, N).

Solution:

Python:

"""

Assumptions:

*) if the 1st line is a number, it's N (not a field 1x1 with a fish number N)

*) if N is given, the field has to measure to it

 else N is determined from the width of the 1st row

*) we are asked to find if there are any empty rows or columns in the field table

"""

import re

def parse_line(line):

 a = []

 res = re.search(r"^(\.|[+-]?\d+)+$", line) # check if the line consists only of dot(s) or

integer(s)

 if res:

 res = re.findall(r"\.|[+-]?\d+", line) # find all such constituents

 for r in res:

 # print(r)

 a.append(r)

 else:

 raise Exception("invalid input")

 return a

field = []

line = input("Enter N or the first row: ").strip()

res = re.match("^(\d+)$", line)

if res:

 n = int(res.group(0))

 m = n # number of rows to read

else:

 a = parse_line(line)

 n = len(a)

 m = n - 1

 field.append(a)

read other rows

for i in range(m):

 line = input("Enter row %d: " % (i+1+n-m)).strip()

 a = parse_line(line)

 if len(a) == n:

 field.append(a)

 else:

 raise Exception("invalid input")

reset number of rows

m = len(field)

collect coordinates

c = set()

for i in range(m):

 for j in range(n):

 if field[i][j] != '.':

 c.add(i)

 c.add(j)

see if anything is missing

for i in range(n):

 if i in c:

 print("%d - YES" % (i+1))

 else:

 print("%d - NO" % (i+1))

print("end.")

exit(0)

Java:

/*

Assumptions:

*) if the 1st line is a number, it's N (not a field 1x1 with a fish number N)

*) if N is given, the field has to measure to it

 else N is determined from the width of the 1st row

*) we are asked to find if there are any empty rows or columns in the field table

*/

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.util.ArrayList;

import java.util.HashSet;

import java.util.Set;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

public class Fish5 {

 private String[][] field;

 private int m; // number of rows in field

 private int n; // number of columns in field

 String[] parseLine(String line) throws Exception {

 ArrayList<String> a = new ArrayList<>();

 // you can optimize the 2 regex by incrementally parsing into '.' and integers

 // but I use regex here for clarity

 if(line.matches("^(\\.|[+-]?\\d+)+$")) { // check if the line consists only of dot(s) or

integer(s)

 Pattern pattern = Pattern.compile("\\.|[+-]?\\d+"); // find all such constituents

 Matcher matcher = pattern.matcher(line);

 while(matcher.find()) {

 a.add(matcher.group());

 }

 }

 else

 throw new Exception("invalid input");

 String[] dummy = new String[0];

 return a.toArray(dummy);

 }

 void input() throws Exception {

 System.out.print("Enter N or the first row: ");

 BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

 String line = reader.readLine().trim();

 Matcher matcher = Pattern.compile("^(\\d+)$").matcher(line);

 int k = 0; // number of rows to read

 if(matcher.find()) {

 n = Integer.parseInt(matcher.group());

 m = n;

 k = m;

 field = new String[m][n];

 }

 else {

 String[] a = parseLine(line);

 n = a.length;

 m = n;

 k = n - 1;

 field = new String[m][n];

 System.arraycopy(a, 0, field[0], 0, n);

 }

 // read other rows

 for(int i = n - k; i < m; i++) {

 System.out.printf("Enter row %d: ", i + 1);

 line = reader.readLine().trim();

 String[] a = parseLine(line);

 if(a.length == n)

 System.arraycopy(a, 0, field[i], 0, n);

 else

 throw new Exception("invalid input");

 }

 }

 void solve() {

 // collect coordinates

 Set<Integer> c = new HashSet<>();

 for(int i = 0; i < m; i++) {

 for(int j = 0; j < n; j++) {

 if(!field[i][j].equals(".")) {

 c.add(i);

 c.add(j);

 }

 }

 }

 // see if anything is missing

 for(int i=0; i<n; i++) {

 if(c.contains(i))

 System.out.printf("%d - YES\n", i + 1);

 else

 System.out.printf("%d - NO\n", i + 1);

 }

 }

 public static void main(String[] args) throws Exception {

 Fish5 fish = new Fish5();

 fish.input();

 fish.solve();

 }

}

10 points:
Write a program that will receive on the input:

- size of the Game of Hungry Sigma-Fish field as integers N and M (optionally)

- field composition, which consists of periods and integers

Your program should print the final field state. You may optionally elect to print all intermediate

field states. Finally, one point will be reserved for the quality of presentation.

Solution:

Python:

"""

Assumptions:

*) if the lst line is 2 numbers, they are m (number of rows) and n (number of columns)

*) if the 1st line is 1 number, it's m (number of rows); n is deducted from the 1st row

*) if n is given, the field has to measure to it

*) the smallest fish does not swim

*) game is over when nobody swims

"""

import re

import math

def parse_line(line):

 a = []

 res = re.search(r"^(\.|[+-]?\d+)+$", line) # check if the line consists only of dot(s) or

integer(s)

 if res:

 res = re.findall(r"\.|[+-]?\d+", line) # find all such constituents

 for r in res:

 a.append(r)

 else:

 raise Exception("invalid input")

 return a

field = []

line = input("Enter M, N or just M: ").strip()

numbers_str = re.split(r"[\s,]\s*", line)

the following will croak if the elements are not all integers

numbers = [int(X) for X in numbers_str]

also verify that they all > O

assert(all(x > 0 for x in numbers))

if len(numbers) == 1:

 m = numbers[0]

elif len(numbers) == 2:

 m = numbers[0]

 n = numbers[1]

 k = m # lines to read

else:

 raise Exception("1st line must have either 1 or 2 integers")

if len(numbers) == 1:

 line = input("Enter row 1: ").strip()

 a = parse_line(line)

 n = len(a)

 field.append(a)

 k = m - 1 # lines to read

read other rows

for i in range(k):

 line = input("Enter row %d: " % (i+1+m-k)).strip()

 a = parse_line(line)

 if len(a) == n:

 field.append(a)

 else:

 raise Exception("invalid input")

a more efficient way would be to update the width only when 1 fish eats another

but itâ€™s separated here for clarity

def get_width(field):

 width = 1

 m = len(field)

 if m > 0:

 n = len(field[0])

 for i in range(m):

 for j in range(n):

 w = len("%s" % field[i][j])

 if w > width:

 width = w

 return width + 1 # +1 to always separate columns

def print_aquarium(field):

 m = len(field)

 if m > 0:

 n = len(field[0])

 format = "%%%ds" % get_width(field)

 for i in range(m):

 for j in range(n):

 print(format % field[i][j], end="")

 print()

 print()

according to stated preference (from North clockâ€”wise)

def circumference(r):

 indices = []

 for i in range(r):

 indices.append((-r,i))

 for i in range(-r,r):

 indices.append((i,r))

 for i in range(r,-r,-1):

 indices.append((r,i))

 for i in range(r,-r,-1):

 indices.append((i,-r))

 for i in range(-r,0):

 indices.append((-r,i))

 # print("circumference(%d) = " % r, indices)

 return indices

def find_closest_fish(i, j, v, field, m, n):

 for r in range(1,max(m,n)): # make search radius progressively larger

 found = ()

 for (dx, dy) in circumference(r):

 # print("dx=%d, dy=%d" % (dx, dy))

 if i+dx<0 or i+dx>=m or j+dy<0 or j+dy>=n or field[i+dx][j+dy]=='.':

 continue

 # print(â€œfound fish %d at (%d, %d)" % (int(field[i+dx][j+dy]), i+dx, j+dy))

 if int(field[i+dx][j+dy]) < v: # smaller fish than I

 if len(found) == 0:

 found = (i+dx,j+dy)

 else:

 if int(field[i+dx][j+dy]) > int(field[found[0]][found[1]]): # bigger fish than previously

found

 found = (i+dx,j+dy) # keep only largest

 if len(found) > 0:

 return found

 else:

 # print("debug: extending radius")

 pass

 return ()

def move_fish(field):

 m = len(field)

 if m > 0:

 n = len(field[0])

 new_field = [['.' for i in range(n)] for j in range(m)]

 for i in range(m):

 for j in range(n):

 if field[i][j] != '.':

 z = find_closest_fish(i, j, int(field[i][j]), field, m, n)

 if len(z) == 2:

 (x, y) = z

 # print("found fish %d at (%d, %d)" % (int(field[x][y]), x, y))

 den = math.sqrt((x-i)**2 + (y-j)**2)

 new_i = i + round((x-i) / den)

 new_j = j + round((y-j) / den)

 else: # smallest fish does not swim

 new_i = i

 new_j = j

 if new_field[new_i][new_j] == '.':

 new_field[new_i][new_j] = field[i][j]

 else:

 new_field[new_i][new_j] = int(new_field[new_i][new_j]) + int(field[i][j])

 return new_field

 else:

 return []

field = [['.', '.', '.', '.', '.', '.', '.', '.'],

['.', '2', '3', '.', '.', '.', '.', '.'],

['.', '1', '4', '.', '.', '.', '.', '.'],

['.', '.', '.', '.', '.', '.', '.', '.']

]

m = len(field)

n = len(field[0])

for t in range(n**3):

 print_aquarium(field)

 new_field = move_fish(field)

 if new_field == field:

 # nothing swam; stop

 break

 else:

 field = new_field

print("end.")

exit(0)

Java:

/*

Assumptions:

*) if the lst line is 2 numbers, they are m (number of rows) and n (number of columns)

*) if the 1st line is 1 number, it's m (number of rows); n is deducted from the 1st row

*) if n is given, the field has to measure to it

*) the smallest fish does not swim

*) game is over when nobody swims

*/

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

class Coordinate {

 int x, y;

 Coordinate(int x, int y) {

 this.x = x;

 this.y = y;

 }

}

public class Fish10 {

 private String[][] field;

 private int m; // number of rows in field

 private int n; // number of columns in field

 String[] parseLine(String line) throws Exception {

 ArrayList<String> a = new ArrayList<>();

 // you can optimize the 2 regex by incrementally parsing into '.' and integers

 // but I use regex here for clarity

 if(line.matches("^(\\.|[+-]?\\d+)+$")) { // check if the line consists only of dot(s) or

integer(s)

 Pattern pattern = Pattern.compile("\\.|[+-]?\\d+"); // find all such constituents

 Matcher matcher = pattern.matcher(line);

 while(matcher.find()) {

 a.add(matcher.group());

 }

 }

 else

 throw new Exception("invalid input");

 String[] dummy = new String[0];

 return a.toArray(dummy);

 }

 void input() throws Exception {

 System.out.print("Enter M, N or just M: ");

 BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

 String line = reader.readLine().trim();

 String[] nums = line.split("\\s*[\\s,]\\s*");

 // the following will croak if the elements are not all integers

 int[] numbers = Arrays.stream(nums).map(s ->

Integer.valueOf(s)).mapToInt(Integer::intValue).toArray();

 // also verify that they all > O

 if(!Arrays.stream(numbers).allMatch(i -> i > 0))

 throw new AssertionError("all numbers must be positive");

 int k = 0; // lines to read

 if(numbers.length == 1)

 m = numbers[0];

 else if(numbers.length == 2) {

 m = numbers[0];

 n = numbers[1];

 field = new String[m][n];

 k = m; // lines to read

 }

 else

 throw new Exception("1st line must have either 1 or 2 integers");

 if(numbers.length == 1) {

 System.out.print("Enter row 1: ");

 line = reader.readLine().trim();

 String[] a = parseLine(line);

 n = a.length;

 field = new String[m][n];

 System.arraycopy(a, 0, field[0], 0, n);

 k = m - 1; // lines to read

 }

 // read other rows

 for(int i=m-k; i<m; i++) {

 System.out.printf("Enter row %d: ", i + 1);

 line = reader.readLine().trim();

 String[] a = parseLine(line);

 if(a.length == n)

 System.arraycopy(a, 0, field[i], 0, n);

 else

 throw new Exception("invalid input");

 }

 }

 // a more efficient way would be to update the width only when 1 fish eats another

 // but it's separated here for clarity

 int getWidth() {

 int width = 1; // of a column for pretty printing

 if(m > 0) {

 for(int i=0; i<m; i++) {

 for(int j=0; j<n; j++) {

 int w = String.format("%s", field[i][j]).length();

 if(w > width)

 width = w;

 }

 }

 }

 return(width+1); // +1 to always separate columns

 }

 void printAquarium() {

 if(m > 0) {

 String format = String.format("%%%ds", getWidth());

 for(int i=0; i<m; i++) {

 for(int j=0; j<n; j++)

 System.out.printf(format, field[i][j]);

 System.out.println();

 }

 }

 System.out.println();

 }

 // according to stated preference (from North clockâ€”wise)

 ArrayList<Coordinate> circumference(int r) {

 ArrayList<Coordinate> indices = new ArrayList<>();

 for(int i=0; i<r; i++)

 indices.add(new Coordinate(-r,i));

 for(int i=-r; i<r; i++)

 indices.add(new Coordinate(i,r));

 for(int i=r; i>-r; i--)

 indices.add(new Coordinate(r,i));

 for(int i=r; i>-r; i--)

 indices.add(new Coordinate(i,-r));

 for(int i=-r; i<0; i++)

 indices.add(new Coordinate(-r,i));

 return indices;

 }

 Coordinate findClosestFish(int i, int j, int v) {

 for(int r=1; r<Math.max(m,n); r++) { // make search radius progressively larger

 Coordinate found = null;

 for(Coordinate c : circumference(r)) {

 int dx = c.x;

 int dy = c.y;

 if(i+dx<0 || i+dx>=m || j+dy<0 || j+dy>=n || field[i+dx][j+dy].equals("."))

 continue;

 if(Integer.parseInt(field[i+dx][j+dy]) < v) { // smaller fish than I

 if(found == null)

 found = new Coordinate(i+dx, j+dy);

 else {

 if(Integer.parseInt(field[i+dx][j+dy]) > Integer.parseInt(field[found.x][found.y])) //

bigger fish than previously found

 found = new Coordinate(i+dx, j+dy); // keep only largest

 }

 }

 }

 if(found != null)

 return found;

 }

 return null;

 }

 String[][] moveFish() {

 if(m > 0) {

 String[][] newField = new String[m][n];

 Arrays.stream(newField).forEach(a -> Arrays.fill(a, "."));

 for(int i=0; i<m; i++) {

 for(int j=0; j<n; j++) {

 if(!field[i][j].equals(".")) {

 Coordinate z = findClosestFish(i, j, Integer.parseInt(field[i][j]));

 int new_i = i;

 int new_j = j;

 if(z != null) {

 int x = z.x;

 int y = z.y;

 double den = Math.sqrt((x - i)*(x - i) + (y - j)*(y - j));

 new_i = i + (int)Math.round((x - i) / den);

 new_j = j + (int)Math.round((y - j) / den);

 }

 else ; // smallest fish does not swim

 if(newField[new_i][new_j].equals("."))

 newField[new_i][new_j] = field[i][j];

 else

 newField[new_i][new_j] = Integer.toString(Integer.parseInt(newField[new_i][new_j]) +

Integer.parseInt(field[i][j]));

 }

 }

 }

 return newField;

 }

 else

 return new String[0][0];

 }

 void solve() {

 for(int t=0; t<n*n*n; t++) {

 printAquarium();

 String[][] newField = moveFish();

 if(Arrays.deepEquals(newField, field)) // nothing swam; stop

 return;

 else

 field = newField;

 }

 System.out.println("it seems that I cannot find a solution");

 }

 public static void main(String[] args) throws Exception {

 Fish10 fish = new Fish10();

 fish.input();

 fish.solve();

 System.out.println("end.");

 }

}

LINGUISTICS

5 points:
Dr. Sigmund Sigman, a former Sigma camper and current linguist, recently discovered an

advanced civilisation of hominids living in ice caves near the Sigmen Glacier in Antarctica. The

hominids, who call themselves Sigmamen, use squid ink to write on seal skins. Dr. Sigman had

trouble translating the writing system of the natives, especially its numerical calculations, in part

because there allegedly were multiple correct representations of the same number. However,

after learning to verbally communicate, he could agree with the natives on some common

numerical values, which are written below in the Sigmaman number system:

Number of fingers on two hands:

V

Variant 2: 𐒏𐒠𐒥

Number of letters in the English alphabet:

Variant 1: 𐒏𐒥𐒥𐒡

Variant 2: 𐒏𐒏𐒡𐒠𐒥

Number of U.S. states:

Variant 1: 𐒏𐒏𐒏𐒥

Variant 2: 𐒂𐒥𐒠𐒏𐒏

Number of U.N. representatives:

Variant 1: 𐒁𐒣𐒠𐒏𐒏𐒥

Variant 2: 𐒂𐒂𐒏𐒏𐒥𐒥𐒣

Number of days in a year:

Variant 1: 𐒁𐒁𐒥𐒠𐒂𐒏

Variant 2: 𐒁𐒂𐒂𐒠𐒥𐒥

Current year:

Variant 1: 𐒎𐒎𐒠𐒁𐒥

Variant 2: 𐒎𐒎𐒥𐒥𐒠𐒁𐒏

Given the following examples, help Dr. Sigman by doing the following:

Question 1: Determine the decimal translation of each of the Sigmaman numerals used in the

examples. Express your answers in Hindu-Arabic numerals (ex: 0, 1, 2, 3) and/or explain your

answer in words.

Question 2: Using the Sigmaman number system to write TWO different variants of:

a. The number of letters in the Russian alphabet

b. The number of representatives in the E.U. parliament

Don’t forget to explain how you found your answer!

Answer:

Starting with the number of fingers, which is 10, one can deduce that 𐒥=5. Now, if we assume

that 𐒠 means subtraction, we can get that 𐒏=15. Number of English letter = 26, so 𐒏𐒥𐒥𐒡=26, and

that gives us 𐒡=1. Notice that it is consistent with variant 2, which writes 26 as 15+15+1-5.

Similarly, variant 1 for number of US states (50) is consistent with the values above. That also

allows us to get another digit’s value: 𐒂𐒥𐒠𐒏𐒏=50, therefore 𐒂+5-15-15=50, and 𐒂=75. Number of

UN representatives is 193=𐒂𐒂𐒏𐒏𐒥𐒥𐒣=75+75+15+15+5+5+𐒣=190+𐒣, and therefore 𐒣=3. Further,

193=𐒁𐒣𐒠𐒏𐒏𐒥=𐒁+3-15-15-5=𐒁+3-35, and 𐒁=225. We can now check that both expressions for

the number of days in a year are consistent with our findings. The last task is to figure out the

value of 𐒎. 𐒎𐒎𐒠𐒁𐒥=2020, so 2*𐒎-225-5=2020, 2*𐒎=2250, and 𐒎=1125. Now we can verify that

𐒎𐒎𐒥𐒥𐒠𐒁𐒏=1125+1125+5+5-225-15=2020.

Question 1:

𐒡=1

𐒣=3

𐒥=5

𐒏=15

𐒂=75

𐒁=225

𐒎=1125

Question 2:

a. Number of letters in Russian alphabet=33=𐒏𐒏𐒣=𐒂𐒠𐒏𐒏𐒥𐒥𐒡𐒡 (=15+15+3=75-15-15-5-5-1-

1)

b. Number of representatives in EU parliament:

Pre-Brexit: 751=𐒁𐒁𐒁𐒂𐒡=𐒎𐒡𐒠𐒂𐒂

Post-Brexit: 705=𐒁𐒁𐒁𐒏𐒏=𐒎𐒏𐒏𐒠𐒁𐒁

10 points:

Finite state automata (FSA) are graphs used for recognizing whether some string is valid

(“grammatical”) in some language. To check whether a string is valid, we start in a vertex of the

FSA marked with a “start”, and proceed to subsequent vertices based on the elements in the

string, reading them one after another. If we finished the string and ended up in a vertex marked

with a double circle (such vertices are called “final states”), the input string is grammatical in a

given language. If we exhausted the string but didn’t end up in a final state, the string is

ungrammatical. Similarly, if we encountered an element in the string which does not have a

corresponding arrow going out of the vertex we are currently in, the string is also ungrammatical.

For example, for the automaton below, the following strings are grammatical: a, ab, abab,

ababab, etc., and the following strings are ungrammatical: b, aa, ba, bb, aba, abb, abaa, etc.

FSAs are often used in natural language processing. The two examples below show FSAs

recognizing English phrases for numbers from 1 to 99 and for prices in dollars and cents under

$100, respectively.

Problem: Write an FSA for time-of-day expressions like eleven o’clock, twelve-thirty, midnight, a

quarter to ten and others -- ideally, your FSA should cover all possible time-of-day expressions

used in English, and only them, i.e. your FSA should not accept any expression that is

ungrammatical in English.

Answer:
There are many possible solutions to this problem, and of course depending on which

expressions you want your automaton to accept, the solutions can differ. Below is a reasonable

solution to this problem.

